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Marginal structural models (MSMs) are being used more frequently to obtain causal effect estimates in obser-
vational studies. Although the principal estimator of MSM coefficients has been the inverse probability of treatment
weight (IPTW) estimator, there are few published examples that illustrate how to apply IPTW or discuss the impact
of model selection on effect estimates. The authors applied IPTW estimation of an MSM to observational data from
the Fresno Asthmatic Children’s Environment Study (2000–2002) to evaluate the effect of asthma rescue medi-
cation use on pulmonary function and compared their results with those obtained through traditional regression
methods. Akaike’s Information Criterion and cross-validation methods were used to fit the MSM. In this paper, the
influence of model selection and evaluation of key assumptions such as the experimental treatment assignment
assumption are discussed in detail. Traditional analyses suggested that medication use was not associated with an
improvement in pulmonary function—a finding that is counterintuitive and probably due to confounding by symp-
toms and asthma severity. The final MSM estimated that medication use was causally related to a 7% improvement
in pulmonary function. The authors present examples that should encourage investigators who use IPTW estima-
tion to undertake and discuss the impact of model-fitting procedures to justify the choice of the final weights.

epidemiologic methods; models, statistical

Abbreviations: AIC, Akaike Information Criterion; ETA, experimental treatment assignment; IPTW, inverse probability of
treatment weight; MSM(s), marginal structural model(s); PEFR, peak expiratory flow rate; RSS, residual sums of squares.

Marginal structural models (MSMs) are being used more
frequently to obtain causal effect estimates in observational
studies (1–3), where causal effects are typically defined by
a comparison of how a population mean outcome changes
when the population exposure of interest changes. These
models are appealing, because the coefficients are directly
interpretable causally and they provide unbiased marginal
estimates even in the presence of time-dependent con-
founding. Inverse probability of treatment weight (IPTW),
G-computation, and double robust estimation methods are
techniques used for causal modeling (4–6). To date, the
principal estimator of MSM coefficients has been IPTW
estimation, because of its relative ease of implementation.
However, there are few simple examples that illustrate how
to apply IPTW to obtain estimates of unconfounded causal
associations between exposures and outcomes. Moreover,

there has been little discussion of the importance of model-
fitting of IPTW estimators of MSM coefficients and its
influence on the validity of the results, and few studies have
fully addressed a critical assumption, the experimental treat-
ment assignment (ETA) assumption.

In this paper, we provide a step-by-step illustration of the
conceptualization and implementation of IPTW estimation
of an MSM to adjust for confounding and to obtain mar-
ginal causal effect estimates. We begin with an example of
traditional association models and demonstrate problems
related to confounding and interpretation. We then discuss
steps necessary to estimate coefficients defined by MSMs.
We examine the sensitivity of the findings to decisions
about model selection and discuss the treatment of extreme
values. Finally, we propose steps to provide a better under-
standing of one model-fitting process that can be used in the
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context of IPTW estimation and the interpretation of the
results.

BACKGROUND

MSMs are based on the concept of counterfactual vari-
ables. Counterfactuals are sets of random variables that rep-
resent all of a study subject’s possible outcomes, including
the observed outcome and those outcomes that would occur
if, contrary to fact, the subject were exposed to each possible
exposure history (5). In the context of MSMs, exposures can
be assigned at random or manipulated, and they are referred
to as ‘‘treatments’’ in the relevant literature, although epi-
demiologists may use the term ‘‘exposure’’ more often. In
an ideal experiment for the investigation of a causal effect,
each subject receives every exposure (including no expo-
sure), and the outcome under each exposure is observed.
Such an experiment would permit direct estimation of the
causal effect of the exposure of interest. In contrast, in ob-
servational studies, at any given time, only one exposure and
the corresponding outcome are typically observed for each
subject. This can be considered a missing-data problem,
because not all possible exposure/outcome combinations
are available.

APPLICATION

In observational studies, factors that influence the expo-
sure assignment may also influence the outcome and, there-
fore, may confound the association of interest. A useful
example occurs in observational studies of the effect of
use of asthma rescue medication on pulmonary function
measures. Asthma rescue medication provides a relatively
short-acting but rapid improvement in lung function mea-
sures such as peak expiratory flow rate (PEFR). Medication
use (exposure) is not randomized and is likely to be strongly
related to the occurrence of prior asthma symptoms that also
can be markers of asthma severity and thus influence PEFR.
Therefore, because we are interested in the marginal (i.e.,
unconditional) causal effect of medication use on PEFR,
confounding by prior symptoms must be considered. Al-
though this is seldom stated, traditional methods of analysis
estimate adjusted effects, but often the coefficient defined by
association models cannot be interpreted causally. In a stan-
dard association model for the effect of medication use on
PEFR that adjusts for prior symptoms, the implicit assump-
tion that symptoms are held constant in the model would be
violated, since a change in medication use would probably
be accompanied by a change in symptoms. Therefore, co-
efficients in an association model would not be interpretable
as the marginal causal effect of medication use on PEFR.
The following examples demonstrate how failure to prop-
erly consider prior symptom status results in estimates that
are contrary to the known pharmacologic effects of rescue
medication use on PEFR. We demonstrate that MSMs lead
to a less biased estimate of the causal effect.

Data were obtained from the Fresno Asthmatic Children’s
Environment Study, which examines the effect of air pollu-

tion on asthmatic children. The study was approved by the
Committee for the Protection of Human Subjects of the
University of California, Berkeley. Over several 2-week pe-
riods, children aged 6–11 years used a portable spirometer
to obtain twice-daily readings of pulmonary function and
completed questions related to symptoms and use of asthma
rescue medications. This analysis includes 4,093 child-days
of observation pertaining to 186 children. The principal out-
come measure (Y) is defined as the mean of up to three
acceptable PEFR values obtained during the morning testing
session. The primary exposure (treatment) variable is the use
of asthma rescue medications (A) in the hour prior to pul-
monary function testing. The confounding variable of inter-
est is reported symptoms (cough or wheeze (W))
experienced from the time the child went to bed until waking
(i.e., symptoms that occurred prior to taking the PEFR mea-
surement) (figure 1). The following notation defines the
counterfactuals of interest: Ya, outcome Y measured under
exposure valuea, such thatY1¼PEFR with treatment andY0¼
PEFR without treatment. The causal effect of interest can be
defined as the difference in the mean pulmonary function
levels of children who did and did not use rescue medica-
tion, in the situation where medication use is unconfounded
and patients are fully compliant with the medication assign-
ment (treated/untreated). A model for E(YjA) cannot reveal
a marginal causal effect, because the counterfactual PEFRs
are not independent of A. However, an MSM can define such
a causal effect. In the absence of such randomized data, we
will discuss the estimation of MSMs to evaluate a causal
effect based on observational data.

The marginal causal effect at the individual level, Y1 � Y0,
is inherently a counterfactual, since, at any given time for
a child, we observe only the outcome under either the treated
state (Y1) or the untreated state (Y0) but not under both states.
Our goal then is to model, at the population level, the
average marginal causal effect, which can be written as b1 ¼
E(Y1 � Y0) ¼ E(Y1) � E(Y0), where E(Y1) and E(Y0) are
the population mean PEFRs when all children in the popula-
tion did and did not take rescue medication, respectively.
Thus, b1 is the average marginal causal effect of A (use of
rescue medication) on Y (PEFR). In contrast, the causal ef-
fect, conditional on prior symptoms (W), can be defined by
b1(W) ¼ E(Y1 � Y0)jW) ¼ E(Y1jW) � E(Y0jW), that is, the
causal effect of A on Ya, conditional on W (prior symptoms).

FIGURE 1. Theoretical association between symptoms, use of
asthma rescue medication, and peak expiratory flow rate (PEFR).
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In practice, E(YjA ¼ 1, W ¼ 1) represents the average PEFR
among children with symptoms who used medication,
whereas E(Y1jW ¼ 1) represents the average PEFR among
the children who had prior symptoms had those children also
taken rescue medication—thus, for some, contrary to fact.
These conditional expected values are equal only if medica-
tion use, A, is independent of the set of all counterfactuals (Ya)
given W (prior symptoms). Under this independence condi-
tion, E(YjA,W) ¼ b0 þ b1Aþ b2W is a model wherein b1 can
be interpreted as the adjusted (pooled) causal effect, that is,
the causal effect of A on Y per stratum of W.

The observed mean PEFR for the children who reported
symptoms in the morning was significantly lower than
that for the nonsymptomatic children, and prevalence of
medication use was highly related to symptoms (table 1).
Medication use should improve pulmonary function; how-
ever, children who took medication in the previous hour also
had significantly lower mean PEFRs than unmedicated chil-
dren (mean PEFR ¼ 3.3 liters/second vs. 3.6 liters/second
(95 percent confidence interval for difference: 0.17, 0.45)).
This counterintuitive finding is probably due to confounding
by symptoms (i.e., the reason the child took medication)
rather than any negative medication effect. Children who
took rescue medication may also have had more severe
asthma, and therefore their mean PEFR may have remained
lower despite medication use.

Clinical experience suggests that use of rescue medica-
tion should result in a 5–10 percent improvement in PEFR
(the corresponding b’s would equal 0.18–0.30). When we
used traditional methods with no adjustment for repeated
observations within individuals to model the association
between PEFR and use of rescue medication in the previous
hour, we obtained a medication effect estimate of b¼�0.31
liters/second (a 9 percent decline in PEFR). We reran the
analysis using PROC MIXED (7) to account for repeated
observations and obtained a b of 0.02 liters/second. A com-
parison of Akaike Information Criterion (AIC) values from
these two models strongly suggested that the adjustment for
nonindependence provided a better fit (AIC ¼ 12,459 vs.
AIC ¼ 8,593); therefore, all future models included this
adjustment. When symptoms were added to the model, the
following estimates were obtained: bmed ¼ 0.04, bwheeze ¼
�0.06, and bcough ¼ �0.01 (all in liters/second). The ad-
justed estimate from these models indicates that medication
use, adjusted for symptoms, is associated with no (or slight)
improvement in pulmonary function.

Before we discuss the estimation of the marginal causal
effect, we should clarify some terminology. In our MSM
of interest, PEFR is the outcome and medication is the expo-
sure (treatment). Factors that may confound this association
are considered in a treatment model, which is used as part of
the IPTW estimation methodology to obtain estimates of
the MSM. The treatment model can be defined as an associ-
ation model that ‘‘predicts’’ use of rescue medication as
some function of confounders. In selecting terms for the
treatment model, it is only necessary to consider factors as-
sociated with PEFR even if such factors are not truly con-
founders (i.e., do not have an effect on symptoms). Indeed,
these factors might have slight associations with medication,
just by chance, in the observed data; therefore, their inclusion
in the treatment model increases the efficiency of the MSM
estimation (4).

The goal of IPTW estimation is to obtain coefficients to
create weights that will redistribute the population so that
medication use is unconfounded. The weights remove the
association with prior symptoms and other variables that
influence PEFR. It is essential that the treatment model be
specified as accurately as possible to obtain proper weights.

In traditional association models, inverse variance
weights are often used to allow the observations with the
least variance to provide the most information to the model.
A similar concept can be applied in causal modeling. Treat-
ment weights defined as the inverse of the conditional prob-
ability give the most weight to the observations that are the
most unusual (where ‘‘usual’’ is defined by the ideal exper-
iment in which A is randomized), hence the term ‘‘inverse
probability of treatment weights’’ (5). We chose to use sta-
bilized weights (marginal probability/conditional probabil-
ity) or P(A)/P(AjW). Stabilized weights provide estimates
that can be more efficient than those obtained by weights
that are simply the inverse of the conditional probabilities
(8). The extent to which the probability of A is confounded
by W can be measured by comparison of these probabilities.
The closer the ratio is to 1 (i.e., the conditional and marginal
probabilities are equal), the less confounding by prior W.
The conditional probabilities are quite different from the
marginal probability, as seen in table 1.

The observed data distribution is displayed in section 1 of
table 2. The weights can be derived from nonparametric
models or 2 3 2 tables or derived parametrically (e.g., using
the logistic regression model). The nonparametric weights
are displayed in section 2 of table 2. In this case, the greatest

TABLE 1. Peak expiratory flow rate and medication use by symptom category among participants in the Fresno Asthmatic Children’s

Environment Study, Fresno, California, November 2000–November 2002

Symptom category Child-days
Probability of
medication use

PEFR* No medication use Medication use

Mean SE* Mean PEFR SE Mean PEFR SE

No cough and no wheeze 2,913 0.02 3.7 0.02 3.7 0.02 3.4 0.15

Either cough or wheeze 703 0.10 3.4 0.04 3.5 0.05 3.2 0.12

Both cough and wheeze 477 0.43 3.3 0.05 3.3 0.07 3.3 0.08

Overall (marginal) 4,093 0.08 3.6 0.02 3.6 0.02 3.3 0.07

* PEFR, peak expiratory flow rate; SE, standard error.
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weight is given to the observations in which medication use
was reported but symptoms were not—that is, the observa-
tions that are less represented than they would have been in
a randomized trial. Application of those weights to the ob-
served data modifies the distribution of the original data,
into what is referred to as the ‘‘ghost’’ data set. When the
nonparametric weights (section 2) are applied to the ob-
served distribution (section 1), the resulting ghost data set
(section 4) is created. Note that in both the observed and
ghost data sets, the marginal probabilities are the same (e.g.,
Pobserved (A ¼ 1) ¼ 0.08 ¼ Pghost (A ¼ 1)); however, the
conditional probabilities P(AjW) are altered. In the ghost
data set, the treatment (A) is no longer associated with symp-
tom status (W); that is, P(A) ¼ P(AjW¼ 0) ¼ P(AjW¼ 1). In
other words, A is now unconfounded by W.

MSMs provide population (marginal) effect estimates
and conditional models provide pooled estimates (when
covariates are included); therefore, direct comparisons be-
tween the estimates are not appropriate. However, we
make the following comparison for heuristic purposes, since
epidemiologists often attach marginal inferences to these
conditional estimates. The average causal effect can be
modeled by an MSM that is a linear model of pulmonary
function with medication use (i.e., E(Ya ¼ A)). When the
nonparametric IPTW estimator is implemented, we get
a medication effect estimate of b ¼ 0.08 liters/second
(about 2 percent improvement), versus b ¼ 0.02 liters/
second from the traditional method (with only medication
in the model).

The demonstration of the calculation of weights based on
2 3 2 tables makes the approach more analogous to methods
that less statistically experienced readers have used in the
past; however, often it is not practical to construct nonpara-
metric weights when multiple confounding factors or con-
tinuous variables are considered. For comparison purposes,
therefore, we recalculated the weights on the basis of coef-
ficients obtained from logistic regression, with medication
use as the outcome and the two symptoms as the indepen-
dent factors. The probability of use of asthma rescue medica-

tion, conditional on symptoms, can be calculated in this
way. Suppose

ðPðA¼ 1jWÞÞ¼ ðexpðaþb13coughþb23wheezeÞÞ
Oð1þ expðaþb13cough

þb23wheezeÞÞ:
If A ¼ 1, then the weight assigned is p(A ¼ 1)/P(A ¼ 1jW).
If A ¼ 0, then the weight assigned is (1 – P(A ¼ 1))/(1 �
(P(A ¼ 1jW)).) In this model, we get a ¼ �3.76, bwheeze ¼
2.01, and bcough ¼ 1.41, which results in the parametric
weights listed in table 2, section 3. Parametric and nonpara-
metric weights (sections 2 and 3) are similar; therefore, the
treatment effect estimates are nearly identical (bmed ¼ 0.08
liters/second for nonparametric weights and bmed ¼ 0.07
liters/second for parametric weights). Although the
weighted regression result is an improvement over the esti-
mate from the traditional method, we have not obtained the
‘‘right’’ answer. One possible explanation is that the treat-
ment model may not completely control for confounding by
factors such as asthma symptoms and severity.

The treatment model used to obtain the denominator of
the weights (i.e., the probability of treatment conditional on
the covariates) must be correctly specified for correct esti-
mation of b. Even when the treatment mechanism (i.e., the
way treatment is assigned) is known, as in the case of a ran-
domized treatment, the treatment model should be selected
from the data. If, for example, randomization were condi-
tional on sex, there could still be residual (random) con-
founding by age or some other characteristic{s} that
should be considered in the assignment of weights. Data-
derived weights will improve the efficiency of the IPTW
estimator; that is, the confidence intervals of the estimate
will be more narrow.

We propose several steps for building and evaluating the
best treatment model, and we refer readers to work by van
der Laan and Dudoit (9) for a more extensive discussion.
The purpose of the procedure is to select the best estimator
of our MSM parameter among a list of candidate IPTW

TABLE 2. Distributions of observed child-days, parametric treatment weights, nonparametric weights, and ghost data child-days

Section 1:
Observed
(n ¼ 4,093)

Section 2:
Nonparametric weights

Section 3:
Parametric weights

Section 4:
Ghost or pseudo-

randomized*
(n ¼ 4,093)

Cough ¼ 0 Cough ¼ 1 Cough ¼ 0 Cough ¼ 1 Cough ¼ 0 Cough ¼ 1 Cough ¼ 0 Cough ¼ 1

Medication use ¼ 0

Wheeze ¼ 0 2,847 516 0.94y 1.00 0.94 1.00 2,669 519

Wheeze ¼ 1 115 272 1.10 1.61 1.08 1.60 126 437

Medication use ¼ 1

Wheeze ¼ 0 66 50 3.70 0.95 3.94 1.03 244 47

Wheeze ¼ 1 22 205 0.52 0.20 0.58 0.21 11 40

* Ghost: P(AjW) ¼ P(med ¼ 0jwheeze ¼ 0, cough ¼ 0) ¼ (2,669/(2,669 þ 244)) ¼ 0.92; P(A) ¼ P(med ¼ 0) ¼ (2,669 þ 126 þ 519 þ 437)/

4,093 ¼ 0.92. Conditional probability is equal to marginal probability.

yObserved: P(AjW) ¼ P(med ¼ 0jwheeze ¼ 0, cough ¼ 0) ¼ (2,874/(2,874 þ 66)) ¼ 0.98; P(A) ¼ P(med ¼ 0) ¼ (2,847 þ 516 þ 115 þ 272)/

4,093 ¼ 0.92. Conditional probability is not equal to marginal probability. Weight for cell (0, 0, 0) ¼ marginal/conditional ¼ 0.92/0.98 ¼ 0.94.
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estimators defined by different models for the treatment
mechanism (i.e., medication use). In short, goodness of fit
was evaluated by Monte Carlo cross-validation (9) with
a modified residual sums of squares (RSS) criterion, which
optimizes the tradeoff between bias and variance. For dem-
onstration purposes, we repeated the following steps only 10
times. For actual model building, many more iterations of
this algorithm are advised (e.g., 10,000 iterations).

We allocated 90 percent of the observed data to a training
data set (Train1) and the remaining 10 percent to a test data
set (Test1). We regressed the variables from each candidate
model (table 3) on the Train1 data and identified the model
that minimized AIC. The coefficients from each candidate
model were applied to each observation in Train1 to obtain
a predicted probability of treatment. These probabilities
were used in the denominator to weight each observation
(i.e., weight ¼ P(A)/P(AjW) as described above) and obtain
the corresponding IPTW estimates of the MSM, E(Ya) ¼ aþ
b1a. We evaluated the performance of the candidate IPTW
estimates of the MSM by evaluating an RSS-type estimator
in Test1. To do this, we used the estimate of the intercept and
medication use coefficients developed from Train1 to calcu-
late a predicted PEFR for each observation in Test1. Ideally,
we would pick an IPTW estimator that minimized the mean
counterfactual RSS. Since this criterion relies on unob-
served data, we estimate this mean counterfactual RSS by
weighting the observed RSS, following the same logic that
leads to the IPTW estimation of an MSM. The model that
provides the lowest AIC is used to provide the weight for the
estimation of the counterfactual RSS.

The estimator was defined as Q¼ (RSS/n)/P(AjW), where
P(AjW) is estimated by the candidate treatment mechanism
model that minimized the AIC for that Traini. In our mod-
eling exercise, model TXK minimized AIC for each Train1-10

and therefore served as the denominator for the calculation

of Q in each Testi. However, such consistency across Traini
is not always the case, because model fit is influenced by the
characteristics of the observations in Traini.

In Train1, we calculated weights using TXA for the MSM
and applied those coefficients in observations in Test1 to
calculate Q1A. We repeated the steps above in Train2-10 and
Test2-10. We calculated an average QA across Test1–Test10

and repeated this for candidate models TXB–TXM. The treat-
ment model that minimized Q (in this case, TXH) was de-
termined to be the best treatment model for our MSM of
interest. Note that the MSM was held constant (i.e., E(Ya) ¼
a þ b1a, a marginal model for the effect of medication on
PEFR), but the IPTW estimator varied on the basis of the
treatment model. Although TXK minimized the AIC, a more
parsimonious model (TXH) provided the treatment weights,
which improved the overall fit of the MSM. The identifica-
tion of the model with the minimum AIC was necessary,
however, to obtain an IPTW-like estimator of the mean coun-
terfactual RSS for each split of the data, as noted above.

We estimated the MSM on 100 percent of the observed
data, based on weights calculated from the application of
TXH to the whole data set. The estimate for the effect of
rescue medication on PEFR was b ¼ 0.26 liters/second, that
is, a population mean increase in PEFR of 7 percent (0.26 O
population mean of 3.6 liters/second ¼ 7 percent increase).
This is in the middle of the range of effects seen in clinical
settings (5–10 percent). This can be compared with the co-
efficient b ¼ 0.13 liters/second when TXK (the model that
minimized the AIC) was used.

The IPTW weights from TXH ranged from 0.10 to 17.0;
therefore, some observations were repeated (weighted) in
the ghost data set up to 17 times more than they appeared
in the observed data set. This is not considered an extreme
weight; however, the distribution of the weights should al-
ways be reviewed before selection of a final weighting

TABLE 3. Candidate* treatment models for the association between use of asthma rescue medication and peak expiratory flow rate

Variables included in treatment modely

TXA TXB TXC TXD TXE TXF TXG TXH TXK TXM

Cough (yes/no) X X X X X X X X X X

Wheeze (yes/no) X X X X X X X X X X

Prior evening medication use (yes/no) X X X X X X

Age (years; continuous variable) X X X X X X X X

Race (Black, White, Hispanic) X X X X X X X X

Steroid use in prior 3 months (yes/no) X X X X X X X X

Prior evening FEV1z (continuous variable) X X X X X X X

Smoker in the home (yes/no) X X X X X X

Height (inches; continuous variable) X X X X X X

Season (dummy variables) X X X X X

Prior evening PEFRz (continuous variable) X X X

History of allergic rhinitis (yes/no) X X

Asthma severity (mild, moderate, severe) X X

* Candidates were selected to adjust for a range of few or many confounders, with and without lagged variables.

yX indicates that the variable was included in that model.

zFEV1, forced expiratory volume in 1 second; PEFR, peak expiratory flow rate.
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scheme, and the sensitivity of estimates to the choice of
weight should be presented and discussed.

To evaluate how close we got to the ‘‘true’’ expected
effect of rescue medication in this population, we compared
the MSM estimate based on our observational data with one
obtained from office-based pulmonary function testing data.
In the office, children were tested before and after the ad-
ministration of rescue medication (albuterol). This testing
corresponds to an ideal data set in which all counterfactuals
are observed, and it provides an example that is similar to
the counterfactual case in which all children are assigned to
the treatment. In the office setting, the average effect of
medication use was a 7 percent improvement in PEFR,
which is identical to the MSM estimate obtained from the
home-based observational data. Although we should not
expect these effects to be identical, this suggests that the
IPTW estimator of the MSM provided a reasonable estimate
of the causal effect of rescue medication in this population.

ASSUMPTIONS

Regardless of which method of causal modeling is used
(IPTW, double robust, or G-computation), three assump-
tions are required in order to identify and estimate param-
eters in an MSM model from observational data. First, the
sequential randomization assumption requires that expo-
sure be randomized with respect to the set of all counter-
factual outcomes, given past exposure and past covariates.
Second, the assumption of time ordering (i.e., that the ex-
posure precedes the outcome) must be maintained. Third,
the consistency assumption is satisfied if the outcome ob-
served is a member of the set of all possible counterfactual
outcomes.

In addition to these assumptions, unbiased IPTW estima-
tion of MSMs requires that the ETA assumption holds. That
is, conditional on covariates at time t, all realizations of the
treatment must be possible. This assumption has only been
addressed in one previous application paper of which we are
aware (10). It is important to evaluate whether the ETA
assumption is met in theory as well as in practice, since even
practical violations lead to biased IPTW estimators (11). The
ETA assumption was met in theory in our protocol: Children
took medication as needed, and therefore there were no
a priori conditions for which the probability of taking med-
ication was fixed at 0 or 1. To test whether the ETA assump-
tion was met in practice, we regressed all of the variables
from the TXH model on the entire data set and used the
coefficients to calculate a predicted treatment value. We
plotted the log odds of treatment (based on the coefficients
obtained from the TXH model) against both the observed and
predicted probabilities to assess visually whether the ETA
assumption was met in practice. We evaluated whether, for
any value of the covariates, the probability of either treat-
ment assignment was equal to 0 or 1. The plot is presented in
figure 2. Conditional on nearly all of the values of the co-
variates in TXH, both realizations of the treatment (0, 1)
occurred. The ETA assumption should be evaluated after
the model-fitting steps have been undertaken. The search
for the best treatment model should not be restricted to
models for which the ETA assumption holds; otherwise,
important confounders may be ignored.

CONCLUSION

MSMs are an important advance for the analysis of com-
plex epidemiologic data. Several methods, each with its own

FIGURE 2. Graphical representation of evaluation of the experimental treatment assumption.
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assumptions, are available for estimating causal parameters
defined by MSMs. IPTW estimation has considerable appeal,
because 1) it can be understood intuitively, even though the
general concepts on which it relies (estimating functions) are
more complex, and 2) existing routines (weighted least-
squares regression) in popular software packages can be used.
We have used an example for which the approximate ‘‘truth’’
of the effect of the treatment is known and was estimated
within comparable data. We demonstrated the effect of mis-
specification of the treatment models on the effect estimate
and evaluated the validity of the estimates with data on the
same children. This example has provided an opportunity to
implement IPTW under conditions where the ETA assump-
tion was almost completely met.

Like other statistical applications, valid IPTW estimation
relies on certain assumptions. Estimation methods for
MSMs assume that there are no unmeasured confounders,
just as do traditional conditional regression analyses. The-
oretical insights demonstrate that the ETA assumption is
a sine qua non for valid IPTW estimation (12). Practical
violation of the ETA assumption requires the use of either
G-estimation or the double-robust estimator. We have pre-
sented a relatively simple method of evaluating this assump-
tion with empirical data and a graphic summary for assessing
the results. We have demonstrated elsewhere the magnitude
of the bias that can be introduced when this assumption is
not met (12).

Software such as SAS can be used to implement IPTW;
however, model-fitting and cross-validation require multiple
steps, extensive programming, and substantial computing
power. Our example shows that presentation of findings based
on IPTW estimation with a single treatment model is inade-
quate. The selection of a treatment model based solely on AIC
criteria led to biased estimation of the causal effect. The sen-
sitivity of the estimates to the truncation of the treatment
weights should be evaluated, and investigators who use IPTW
estimation should be expected to undertake some level of for-
mal model-fitting to justify the choice of the final weights used.
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