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a b s t r a c t

Background: Polycyclic aromatic hydrocarbons (PAHs) are generated as a byproduct of combustion, and
are associated with respiratory symptoms and increased risk of asthma attacks.
Objectives: To assign daily, outdoor exposures to participants in the Fresno Asthmatic Children’s Envi-
ronment Study (FACES) using land use regression models for the sum of 4-, 5- and 6-ring PAHs (PAH456).
Methods: PAH data were collected daily at the EPA Supersite in Fresno, CA from 10/2000 through 2/2007.
From 2/2002 to 2/2003, intensive air pollution sampling was conducted at 83 homes of participants in
the FACES study. These measurement data were combined with meteorological data, source data, and
other spatial variables to form a land use regression model to assign daily exposure at all FACES homes
for all years of the study (2001e2008).
Results: The model for daily, outdoor residential PAH456 concentrations accounted for 80% of the
between-home variability and 18% of the within-home variability. Both temporal and spatial variables
were significant in the model. Traffic characteristics and home heating fuel were the main spatial
explanatory variables.
Conclusions: Because spatial and temporal distributions of PAHs vary on an intra-urban scale, the location
of the child’s home within the urban setting plays an important role in the level of exposure that each
child has to PAHs.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The majority of health effect research focused on daily exposure
to ambient pollutants has used a single central monitor to assign
exposure to participants (Peel et al., 2005; Penttinen et al., 2001),
relying on the assumption that temporal variability overshadows
spatial variability such that exposure misclassification is negligible.
When incorrect, this assumption could lead to exposure misclas-
sification of spatially heterogeneous pollutants and result
in significant differences in the correlation to the health outcome
(Sarnat et al., 2010; Wilson et al., 2005, 2007). The degree of
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heterogeneity of a pollutant’s spatial distribution can be tested by
examining the absolute concentrations, correlation coefficients,
and the coefficient of divergence between measured data at
different sites (Wilson et al., 2005). Using these techniques,
researchers have found many air toxics, including PAHs, with
enough heterogeneity that using a single monitor would cause
some degree of exposure misclassification (Lehndorff and Schwark,
2004; Levy et al., 2001). If the distribution of PAHs is heterogeneous
within the study area and some spatially resolved measurement
data are available, modeling the spatial distribution may be pref-
erable to using a central monitor value directly (Ito et al., 2004).
However, in a moderate to large urban area for a cohort epidemi-
ology study collecting personal PAH samples or even a large
number of cross-sectional samples is not feasible. The intent of this
paper is to model the daily individual exposures to outdoor resi-
dential PAHs, over 8 years of follow-up, through land use regression
(LUR) modeling.

PAHs are a class of compounds characterized by fused aromatic
rings that formwhen organic matter undergoes incomplete combus-
tion. PAHs generally exist in complexmixtures of combustionproducts
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such as diesel exhaust, soot, and wood and tobacco smoke. They exist
in ambient air as gases (gas-phase) and adsorbed to particulatematter
(particle-phase or particle-bound). PAHs are produced by both diesel
and gasoline fuel combustion (Cadle et al., 1999; Marr et al., 1999;
Riddle et al., 2007; Rogge et al., 1993), as well as biomass burning
(Jenkins et al., 1996; Schauer and Cass, 2000). However, PAHs are not
merely another proxy for traffic exhaust, they are well-known as
carcinogens (International Agency for Research on Cancer, 1989) and
toxic air contaminants (Office of Environmental Health Hazard
Assessment, 2001). PAHs have most recently been implicated in
short-term respiratory health outcomes (Delfino, 2002; Diaz-Sanchez
et al., 1994) and immunological functioning related to mechanisms
involvedwith asthma and atopy (Finkelman et al., 2004; Nadeau et al.,
2010; Perera et al., 2009). Despite this increasing interest in health
effects related to exposure to ambient concentrations of PAHs, to our
knowledge, no data exist on daily intra-urban spatial distributions or
individual exposure estimates in the context of an epidemiologic
cohort study.

LUR models are spatial regression models that relate location-
specific data on pollutant concentrations to location-specific source
and environment data using regression (Briggs et al., 1997). Unlike
interpolation methods, such as kriging, LUR models are able to
exploit measurement data to build a smooth pollutant surface even
when there are significant local sources and intra-urban variability
(Jerrett et al., 2005). The majority of LURmodels and spatial models
for air pollution exposures related to health effects has focused on
modeling annual average exposure to NO2, CO, or particulate
matter (Hoek et al., 2008). While PAHs share some emission sour-
ces with these pollutants, the spatial distributions of these three
pollutants are not identical (Fischer et al., 2000; Levy et al., 2001;
Sarnat et al., 2010).

2. Methods

2.1. Study background and population

The combination of Fresno’s geographic location and meteo-
rology contributes to very poor air quality in both the summer and
Fig. 1. Locations of FACES participants (blue circles and orange squares), H
the winter (Blanchard et al., 1999). Because of the Southern Sierra
Nevada in theWest, the Tehachapi Mountains on the south, and the
Coastal Range Mountains in the East, the San Joaquin air basin (in
which Fresno is located) does not have an outlet for air pollution.
Additionally, during the winter months, inversion layers from
lowered mixing heights cause stagnation in the valley air. Main
sources of PAHs in Fresno are the freeways, major arterials, agri-
cultural burns, residential fireplace and woodburning stove use,
and heating (Schauer and Cass, 2000). Fresno has three major
freeways, but US Route 99 on thewestern edge of the city, is heavily
used by truck traffic through the region whereas centrally-located
State Route 41 is primarily local, light-duty vehicles (Margolis
et al., 2009).

The Fresno Asthmatic Children’s Environment Study (FACES)
focused on quantifying the relationship between air pollution and
the natural history of asthma symptoms and lung function growth
in 315 young children, ages 6e11 years at entry, with asthma who
reside in Fresno, California. Further details on the design of the
study and cohort characteristics have been published elsewhere
(Mann et al., 2010; Margolis et al., 2009; Nadeau et al., 2010). The
participants in FACES were contacted every 3 months to collect
health data and confirm residential address. From 2/2002 through
2/2003, a substudy of 83 homes of FACES participants, the home
intensive (HI) substudy, was conducted to collect more detailed
pollution and activity data from participants (Fig. 1). These partic-
ipants were selected based on residential location in relation to
anticipated traffic exposure (low or high) and smoking status of
parents (non-smoking).

2.2. Field sampling

Two field sampling methods were used to characterize airborne
concentrations of ambient PAHs for modeling daily exposures.
First, a real-time monitor of particle-bound PAHs, the PAS2000
(EcoChem Analytics, League City, TX) collected data from October
2000 throughSeptember2008 at the EPASupersite in Fresno (Fig.1).
The PAS2000 uses a photoelectric aerosol sensor to measure the
levels of particle-bound ambient PAH with three rings or greater.
I sub-study participants (orange squares), and the US EPA Supersite.



E.M. Noth et al. / Atmospheric Environment 45 (2011) 2394e24032396
The second sampling method collected PAHs on pre-baked
quartz fiber filters (PallFlex Tissue Quartz) that were impregnated
with XAD4 resin. Two filters in series per sample were collected
using a Harvard-type impactor with a PM10 inlet and airflow
of 10 lmin�1. These samples were collected during the HI substudy,
2/2002e2/2003, outside the 83 selected homes. The PAH samplers
at the homes were placed in the backyard of the residence away
from porches or overhangs and preferentially in the middle of the
yard. Samples were collected for 24 h (8e8pm) on five days within
each two-week panel study. There were 23 panels during the
substudy, and 28 of the 83 homes participated in more than one
panel. Field blank filters were collected at the same time.

The PAS2000 and 2 integrated filter samplers were co-located to
validate the inter-comparability of the twomethods. There were 27
days of sampling split between thewarm and cool season, resulting
in 44 paired sets of filter-PAS2000 samples. These samples were
also used to select the best and most inclusive grouping of PAHs. As
discussed in Section 2.3, the filter analysis provides concentrations
for 14 PAHs. We wanted to select the group of PAHs that included
the maximum number of PAHs and had a good correlation coeffi-
cient when compared to the PAS2000 concentration.

2.3. Laboratory and data analysis

The PAS2000 values were collected at 1-min intervals. These
1-min intervals were integrated into 24-h average concentrations
to match the sampling period of the HI filter samples.

Filter samples were extracted by sonication in three aliquots of
dichloromethane followed by vacuum filtration. The extracts were
concentrated for analysis under nitrogen. Analyses were performed
on a Hewlett Packard model 6890 Gas Chromatograph equipped
with a 30 m (50%-Phenyl)-methylpolysiloxane fused silica capillary
column and a 5972 Mass Selective detector operating in the
selected ion-monitoring mode for enhanced sensitivity. The filters
were analyzed and blank-corrected for 14 PAHs e acenaphthylene,
acenaphthene, fluorene, anthracene, phenanthrene, fluoranthene,
benz[a]anthracene, chrysene, benzo[a]pyrene, benzo[b]fluo-
ranthene, benzo[k]fluoranthene, benzo[ghi]perylene, indeno[1,2,3-
cd]pyrene, and dibenz[a,h]anthracene.

2.4. Temporal information

The PAS2000 measurement data collected at the EPA Supersite
was used as the primary independent variable for measuring
temporal variability. To refine the estimates of temporal variability,
meteorological variables describing hourly wind speed, hourly
wind direction, dailywind trajectory, dailymean temperature, daily
mean precipitation, and daily mean relative humidity (%) were also
included. Hourly wind speed and direction were measured at the
EPA Supersite. From the wind speed and direction data, wind
trajectory and wind recirculation factors were calculated. Wind
recirculation varied from 0 to 1 and calculated as: 1� (Net/Total
transport distance) (Allwine and Whiteman, 1994). The net trans-
port distance is the resultant distance that a given wind parcel
traveled during the time of observation. The total transport
distance is the total distance that the wind parcel traveled during
the time of observation. A low value indicates well-developed
airflow and transport. The daily mean precipitation was measured
at California State University, Fresno. Temperature, relative
humidity (%), and select hourly wind data were measured at both
the EPA Supersite and at two other fixed sites within the Fresno/
Clovis Metropolitan area (Clovis and Sierra Sky Park).

In addition to measurement data, seasonal variables were
assigned based on date of sample collection and average weekly
concentrations of PAH at the EPA Supersite. A binary variable was
used to indicate if the sample was collected on aweekday (Monday
through Friday) or on the weekend (Saturday or Sunday).

2.5. Geographic information

Geographic information was collected, compiled and processed
in ArcGIS 9.2 (ESRI, Redlands, CA) and, when necessary, further data
calculations were completed in SAS 9.1 (SAS, Cary, NC).

2.5.1. Traffic
Two datasets were used to define traffic-related spatial vari-

ables: roadway locations from the TeleAtlas MultiNet� USA
(TAMN) roadway database and vehicle activity data from the Cal-
ifornia Department of Transportation (Caltrans). The vehicle
activity data were GIS-based and contained estimates of annual
average daily traffic (AADT) volumes traveling both directions on
select road segments, and truck-traffic-volumes for freeways and
state freeways (Margolis et al., 2009).

Five categories of traffic variables were defined: roadway
proximity, roadway density, traffic intensity, and home location in
relation to school bus exposures. Roadway proximity measured the
distance from the homes to the nearest of each of five major road
types (freeway, major arterial, minor arterial, major collector, and
minor collector). Freeways are high-capacity, high speedmulti-lane
roadways with limited access to other roadways. Arterial roads are
large-capacity city roads, connecting collector and local roads to
freeways. Collector roads are smaller and slower than arterials, in
general, and provide connection between local roads and arterial
roads, in addition to access to residential properties. Roadway
density was defined as the sum of total roadway length of each of
the five major road types within each of 5 circular buffers (100 m,
200 m, 300 m, 400 m, and 500 m). Traffic intensity at each partic-
ipant home was calculated based on AADT counts from Caltrans,
assuming Gaussian decay of exhaust emissions with distance to the
roadway (Wilhelm and Ritz, 2003). Last, the impact of diesel school
buses was represented using the distance to the nearest elementary
school as a proxy for exposure to bus exhaust. Elementary school
proximity was used to capture this source in Fresno, because
elementary schools are used as primary bus stops for the school
district, not children’s homes. School buses do not have established
routes, but vary their route depending on the driver and traffic
conditions (Fresno Unified School District, personal communica-
tion, 2005).

2.5.2. Land use
Land use data were obtained from the California Department of

Water Resources county-wide California Land &Water Use surveys
from Fresno County (2000) and Madera County (2001). Land use
types used were urban, vacant urban (including parking lots),
landscaped urban, residential urban, commercial, industrial, agri-
cultural, semi-agricultural, native vegetation, and native riparian.
To describe the participant’s neighborhood, each participant home
was assigned three sets of values: land use type on which the
participant’s home was located; land use types within 5 circular
buffers (radii 100 m, 200 m, 300 m, 400 m, and 500 m) near the
home; and total land use area, by type, within the same 5 buffers
around the home.

2.5.3. Agricultural burning
We obtained agricultural burning data for Fresno and Madera

counties from the San Joaquin Valley Unified Air Pollution Control
District for 2000 through 2007. The records of approved agricultural
burn permits contain information on date, location, and type and
amount of materials burned. Permits without location information,
9% of total, were excluded from our analyses. Two types of variables
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were formed for 4 circular buffers of radii 5 miles, 10 miles, 15 miles
and 20 miles (8 km, 16.1 km, 24.1 km, 32.2 km): daily count of
agricultural burns and total tons burned within each buffer.

2.5.4. Neighborhood variables
Data from the United States 2000 Census SF3 dataset was

selected for transportation, home fuel use, or socioeconomic
characteristics. All blockgroup and census tract variables were
assigned using location of residence. Additionally, neighborhood
data describing house characteristics from the FACES datasets and
spatial location are included as part of this subset.
2.6. Exposure modeling

2.6.1. Model form and selection
To assign daily PAH exposure for all participants in FACES for all

days during the FACES study, LUR modeling was used. The resi-
dential outdoor PAH model used the filter measurement data from
the HI substudy as the dependent variable and the PAS2000
measurement data at the EPA Supersite and other temporal and
geographic information as the independent variables. Because the
filter collection in the HI substudy contains repeated sampling
during each two-week panel (up to 5 measurements/home),
a mixed-effects regression model was used as the final form of the
model. Potential determinants of residential outdoor PAH concen-
tration were treated as the fixed effects, and sample location was
treated as a random effect. The form of the model was:

Yi¼ uþ B1þ B2þ.þ Bkþ Xiþ ei

where Yi is the concentration of residential outdoor PAH
measured at the ith location, u is the true underlying mean of
residential outdoor PAH averaged overall strata, B1, B2, ., Bk, are
fixed effects of k determinants, Xi is the random effect of the ith
location, and ei is the random error.

Because of the large number of variables, prior to fitting the
model manually we used two methods to improve model fit. First,
we removed variables with little or no variability from the pool of
candidate variables. Binary variables were required to have at least
10% of the observations in one category. Continuous variables were
required to showa histogramwith at least two stratifications where
at least 10% of the observations were in the smaller strata. Second,
the forward stepwise selection algorithm in PROC REG in SAS 9.1
(Cary, NC) was used to reduce the dimensionality of the model.
Candidate independent variables were run in 11 subject matter
groupings (PAH measurement at the central site, wind speed, wind
direction at the EPA Supersite, wind direction at other fixed
sampling sites, other meteorological characteristics, traffic, land
use, agricultural burning, neighborhood and housing characteris-
tics, day of the week of sampling and season) with the residential
outdoor PAH concentration as the dependent variable. The entry
alpha value was set to 0.10 and the alpha to stay value to 0.15.
Variables selected from each of these groups were run manually in
PROC MIXED. Mixed modeling does not allow for R2 calculation,
instead we used the statistical significance of each parameter
estimate and the change in the variance component estimates to
guide inclusion and exclusion from the model. Additionally, we
confirmed that there was no collinearity between the final selected
covariates. The temporal autocorrelation of the residuals, spatial
autocorrelation of the residuals using Moran’s I, examination of
standardized residuals (using the Cholesky decomposition),
examination of the index of agreement (IOA) and the root mean
squared error (RMSE) from leave-one-out cross-validation were
used to evaluate model fit and performance.
To check the residuals in the model, they were transformed to
have a constant variance and zero correlation based on the Cho-
lesky decomposition. This transformation was done with SAS PROC
MIXED with the VCIRY option. The transformed residuals were
tested for normality through examination of the histogram and the
normal quantileequantile plot. The scaled residuals also were used
to test that the model covariance assumptions were adequate. This
was done informally by examination of a scatterplot of the absolute
value of the transformed residuals versus the predicted filter PAH
values. As with simple regression model, the residuals should show
no systematic pattern. More formally, the overall fit of the covari-
ance was tested by calculation of a smoothed plot of the empirical
semi-variogram with time as the unit of lag.

Leave-one-out cross-validation was used to evaluate the final
mixed model iteratively, leaving out one HI location at a time, since
there were multiple observations at each HI location. Parameter
estimates from each model were used to calculate the omitted
location values, and normality of the distribution of the parameter
estimates was evaluated. From the leave-one-out resulting data,
the index of agreement (IOA) and the root mean square errors were
calculated to evaluate the model goodness of fit (Willmott, 1982;
Wilson et al., 2005). The IOA values span 0e1, with values over
0.5 considered to show a good model fit. The total, systematic, and
unsystematic root mean squared errors (RMSE, RMSEs, RMSEu)
were calculated to look at the error in the model. The RMSE is
ameasure of the total average difference between the observed and
predicted. The RMSEs represents the error that is intrinsic to the
model; i.e. that error which can be predicted mathematically. The
RMSEu represents the potential accuracy of the model. The lower
the total, systematic, and unsystematic RMSE, the better the model
fit. All three metrics are in the units of the observed variable.

Moran’s I statistic is a measure of spatial autocorrelation whi-
ch reflects the level of spatial dependence in second order effects,
i.e. deviations of the variable from its mean. It takes point locations
as input and assumes these points are centroids representing
underlying continuous area data. This is an appropriate assumption
for air pollution distribution modeling since each sampling point is
assumed to represent the true value of the underlying continuous
surface of air pollutant concentration at that location. Moran’s
I varies from�1 to 1, with�1 as uniformly distributed,þ1 as highly
clustered, and 0 as randomly distributed. If the Moran’s I coefficient
is significant, then the pattern of the values cannot be explained by
random chance. The Moran’s I coefficient was calculated for the
residuals from the residential outdoor PAH model to ensure no
residual spatial autocorrelation.

2.6.2. Individual exposure estimates
To estimate outdoor individual exposures to PAHs for each day

of the FACES study for all participants, the models were applied to
each day and each location in the study. The estimates generated
with this method are daily outdoor concentrations of PAHs at each
child’s home. To apply the models, we used parameter estimates
generated by the model in combination with the temporal and
geographic data in our database to calculate the outdoor concen-
trations for each participant on each day.

3. Results

3.1. Study background and population

During the time from 1/1/2001 to 9/30/2008, there were 315
FACES participants who lived at a total of 465 residences, a conse-
quence of the fact that some participants moved during the study
(Fig. 1). These residences were geocoded using the TAMN roadway
database. More than 97% of the residences matched an exact street
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address in the database, and the remaining were geocoded with
online mapping services or GPS coordinates from home visits.

3.2. Field sampling

The 24-h average concentrations of particle-bound PAHs at the
EPA Supersite showed a strong seasonal oscillation during the eight
years of available data (Fig. 2). Additionally, there is a statistically
significant decreasing trend (p¼ 0.007) in winter-time particle-
bound PAHs measured at the EPA Supersite over these eight years.

The 497 24-h PAH filter samples were collected on 126 days
outside the 83 participants’ homes during the HI study. There were
55 homes sampled in one season and 28 homes sampled in two
seasons; up to 5 daily samples collected during each 2-week home
visit. The range of homes concurrently sampled on each day of
sampling was 1e6 homes.

The comparability between the co-located filter-based PAH
samples and the PAS2000 was generally high (Supplemental
section, Table 1). The most inclusive group correlation between
the two methods was PAHs with 4-,5-, or 6-rings (fluoranthene,
benz[a]anthracene, chrysene, benzo[a]pyrene, benzo[b]fluo-
ranthene, benzo[k]fluoranthene, benzo[ghi]perylene, indeno[1,2,3-
cd]pyrene, and dibenz[a,h]anthracene) with a Pearson correlation
coefficient of 0.86. This summary variable, called PAH456, was used
to build a model of outdoor residential PAH exposure.

3.3. Temporal information

Because of the topography of the San Joaquin Valley, there is no
single prevailing wind direction, but instead a wind direction
pattern throughout the day. The dominant 24-h pattern shows that
wind measured at the EPA Supersite blows, on most days, from the
northwest quadrant in the late afternoon to very early morning
hours. During the daylight hours, the wind direction will often
reverse and blow from the SW quadrant, but the direction is more
variable from day-to-day than in the evening. Wind out of the NW
would likely spread the vehicle emissions from U.S. Route 99 across
the city. Wind out of the SW comes from a primarily agricultural
landscape, with a possibility of spreading larger particles from dirt
and dust. Wind speed is variable throughout the year, with summer
months showing a higher average speed than winter months.
Fig. 2. Time series plots of observed particle-bound PAH concentrations (ngm�
The weekly average 24-h PAH concentrations at the EPA
Supersite were evaluated to find where the concentration rose to
winter-time levels from the lower non-winter levels. This rise was
defined as a sustained increase A seasonal variable was defined
using that week as the cutpoint: winter (11/22/2002 through 2/8/
2003) and non-winter (2/2002 through 11/21/2002). When used in
modeling exposures, this variable was generalized to November
through February to reflect the winter season. There were 171
samples (34%) collected in the winter season, and 326 (66%) in the
non-winter season.

Concentrations of the HI sub-study home samples collected on
weekdays were not significantly higher than on weekends.
However, given the study design this sample contains considerable
spatial heterogeneity that may mask temporal differences. The
PAS2000 concentrations from the US EPA Supersite show a statis-
tically significant difference of 1.40 ngm�3 between weekdays and
weekends. This likely reflects higher traffic intensity due to higher
commuter traffic on weekdays.

3.4. Geographic information

Nearly half the HI sub-study homes were located on a major
collector road (45%). However, the type of roadway with the
greatest density near homes, for all buffer sizes, was the minor
collector, with 89% of homes within 100 m of a minor collector. In
contrast, major arterials were the least common roadway type for
both density and proximity. Only 10% of HI sub-study homes were
within 500 m of a major arterial.

Most of the participant homes were situated on urban land
(95%). Only 23% lived within 500 m of agricultural land, despite the
region’s high agricultural presence. Additionally, despite the large
number of agricultural burns reported in Fresno and Madera
counties during the HI substudy (6390 burns) only 42% of homes
had any burning within 20 miles on the day of sampling.

3.5. Exposure modeling

3.5.1. Model selection
The natural logarithm of PAH456 concentrations best described

the distribution of concentrations in Fresno and was used in model
selection and the final model as the dependent variable. Bivariate
3) as measured by the PAS2000 at the US EPA Supersite, 10/31/00e9/30/08.



Table 1
Parameters and estimates for the outdoor residential PAH456 concentrations, units in log ngm�3.

Variable Estimate (b) Standard error Pr> jtj Variable range

Intercept 1.29 0.26 <0.0001 e

24-h particle-bound PAH @ Fresno Supersite (ngm�3) 0.048 0.006 <0.0001 1.1e50.0
Winter season 0.92 0.15 <0.0001 Binary (0/1)
9 am wind direction from between NW and N 0.56 0.11 <0.0001 Binary (0/1)
24-h relative humidity (%) @ Clovis �0.017 0.003 <0.0001 28.9e97.0
Closest road to residence is smallest road type �0.36 0.09 0.0001 Binary (0/1)
Fraction of homes In blockgroup that use gas heating fuel 0.90 0.31 0.0036 0.13e0.84
24-hour average wind recirculation factor �0.49 0.17 0.0036 0.01e0.93
Total length (meters) of highway within 500 m 0.000082 0.000047 0.08 0e6209
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relationships showed that the outdoor residential PAH456
concentrations were not strongly correlated with any single inde-
pendent variable. The most explanatory independent variable was
the 24-h EPA Supersite PAH measurement with R2¼ 0.19. This
reflects a high degree of variability in the dataset, possibly due to
spatial variability.

Using the multi-step approach outlined in Section 2.6 a model
was selected for PAH456 with eight fixed effects e five temporal,
three spatiale and one random effect, residential location (Table 1).
The final full mixed-effects model accounted for 81% of the
between-location variance and 18% of the within-location variance
(Table 2). The five temporal variables accounted for almost the full
change in the between-location variance. However, the addition of
the spatial factors affected a 16% overall reduction in the between-
location variance. Table 3 shows predicted PAH456 for some
combinations of the fixed effects in the model.

The overall fit of the model, from the leave-one-out cross- vali-
dation, was good, with the IOA¼ 0.67. The total RMSE was
2.25 ngm�3, the RMSEs was 1.91 ngm�3, and the RMSEu was
1.62 ngm�3. Themodel fit did not vary significantly by season. Fig. 3
shows a plot of the observed and the predicted outdoor residential
daily PAH456 concentrations. Residual analysis shows normal
distributions, with no systemic bias or errors. Temporal autocorre-
lation was not found in the scaled residuals, nor was there spatial
autocorrelation as assessed by the Moran’s I statistic (I¼�0.01,
p¼ 0.83).

3.5.2. Individual exposure estimates
The PAH456modelwas used to calculate 654,170 individual daily

estimates of PAH concentrations outside homes, encompassing all
FACES participant-days from 1/1/2001 through 9/30/2008. Table 4
shows the distribution of the estimates compared to the observed
(a figure showing the time series of the daily individual estimates
for all participants and all days is available in the Supplemental
section, Fig. 1). The distribution of the estimates shows that in the
years of the HI substudy the model estimates were similar to those
of the observed. The average daily ratio of the maximum to
minimum concentrations, a measure of the range of the spatial
variability in PAH456 in Fresno, compared well between the esti-
mates (ratio¼ 3.30) and the observed values (ratio¼ 3.65). Across
the Fresnometropolitan area, the average daily ratio ofmaximum to
minimum concentrations is 5.2. Fig. 4 shows the spatial distribution
Table 2
Variance component estimates for one-way random effects model and two mixed-effect

Variance Random effects
model, est.(CI)

Between house variance 0.27 (0.18e0.46)
Within house variance 0.71 (0.62e0.82)
% of between house variance explained: e

% of within house variance explained: e
of PAH456 for a single day, 2/18/03. This daywas selected because it
is part of the higher winter season (the daily mean is in the highest
5% of days estimated), showing the distribution when it is likely to
be both clinically significant and noticeably variable. The map
illustrates the spatial variability of the PAH456 estimates across
Fresno during the winter e higher values occur in the southern
central portion of Fresno, particularly in the downtown region
where the freeways intersect. There is also a band of high values in
the central northern portion of Fresno, which matches the location
of a major arterial, Herndon Avenue, which has high truck traffic
across the city. In contrast, Fig. 5 shows the spatial distribution of
PAH456 for a single day, 8/14/07, during the non-winter months.
Thismap shows that themajority of the urban area has an estimated
PAH456 concentration that is lower than the lowest concentration
on the high winter day. The areas of higher relative PAH456
concentrations remain, but the absolute concentrations are lower.
Both maps show the locations of the FACES residences, illustrating
why the maximum to minimum ratio for the residences is smaller
than that of the full city. The density of FACES residences, and Fresno
residential neighborhoods generally, is not evenly distributed
overall levels of outdoor PAH456 concentrations. The location of
residences is biased toward lower concentrations.

4. Discussion

The goal of this research was to specify and implement a model
for daily, outdoor, residential PAH concentrations for each FACES
participant for use in further epidemiological investigations of
acute and longitudinal effects of air pollution on asthmatic children
(Mann et al., 2010; Margolis et al., 2009; Nadeau et al., 2010). This
goal was achieved with a mixed-effects model based on measure-
ment data combined with longitudinal data collected over more
than seven years. The singlemost predictive covariate in themodels
presented, assessed by calculating the maximum possible contri-
bution of each covariate given the coefficient and the range of the
covariate, was the 24-h particle-bound PAH concentration at the US
EPA Supersite. A second highly influential variable in our data was
the season during which the sample was collected. The winter
season (November through February) is significantly higher in
particle-bound PAHs as measured at the EPA Supersite, and the
model confirmed that the same seasonality can be observed in the
residential data when the spatial distribution is taken into account.
s models. (Number of samples¼ 497, number of homes¼ 83)

Mixed effect model, temporal
fixed effects, est. (CI)

Full mixed effect model, temporal
and spatial fixed effects, est.(CI)

0.09 (0.05e0.23) 0.05 (0.02e0.21)
0.58 (0.51e0.68) 0.58 (0.51e0.67)
65.1% 81.2%
17.7% 18.3%



Table 3
Predicted outdoor residential PAH456 concentrations, using parameter estimates from the full mixed-effects model and values derived from the full dataset of possible days (1/
1/01e9/30/08).

Median
values

Winter High PAH
in winter

Living on
smallest road

Living near
highways

Worst
Case

Best
Case

24-h particle-bound PAH @ Fresno Supersite (ngm�3) 3.1 3.1 21.7 3.1 3.1 54.6 0.9
Winter season No Yes Yes No No Yes No
9 am wind direction from between NW and N No No No No No Yes No
Fraction of homes in blockgroup that use gas heating fuel 0.61 0.61 0.61 0.61 0.61 0.90 0.03
24-h average wind recirculation factor 0.26 0.26 0.26 0.26 0.26 0.00 1.00
Closest road to residence is smallest type No No No Yes No No Yes
Length (meters) of highway within 500 m 0 0 0 0 1819 6208.64 0
24-h relative humidity (%) @ Clovis 51.8 51.8 51.8 51.8 51.8 16.6 99.8
Estimated PAH456 (ngm�3) 2.72 6.80 16.49 1.90 3.16 612.20 0.32
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This seasonality, lower concentrations during the summer months
and higher in the winter months, is typical of PM2.5, CO, elemental
carbon, black carbon, NO2, and NOx in Fresno (Blanchard et al.,1999;
Schauer and Cass, 2000). A main cause of higher concentrations in
the winter months is the altered meteorological conditions,
including lower mixing height. As mixing height data were not
available during the study, using season as an indicator was useful.
A second significant contributor to increased PAH concentrations
during the winter in Fresno was increased biomass burning due to
woodstove and fireplace use (Launhardt et al., 1998). Both wind
direction and wind pattern were important in the model. On days
when the wind was blowing from between the NW and N direc-
tions, residential outdoor PAH456 was higher. This is likely because
Hwy 99 is to the west of the majority of Fresno, meaning that this
wind pattern would blow traffic emissions from Hwy 99 across the
city. The three spatial variables (i.e. percent of gas heating fuel use,
residential road type, and length of freeway within 500 m of resi-
dence) eachmademoderate contributions to themodel overall, but
significant contributions to the change in between-home variability
(16%) once temporal trends were accounted for. The percent of
houses using gas as the primary heating fuel is a neighborhood-
level variable, whereas the residential road type and the length of
freeway within 500 m are individual-level variables. This indicates
that the PAH spatial distribution is variable on both a neighbor-
hood- and individual-level when examined as a daily concentra-
tion. The temporal variables (i.e. PAH measurement at the EPA
Fig. 3. Plot of the outdoor residential PAH456 concentrations
Supersite, wind characteristics, and seasonality) made a larger
reduction in the between-home variance (65%), but temporal
variability in the data was larger than spatial variability. In addition
to explaining a large amount of the variability in the dataset, the
model also had good model fit, with IOA sufficiently high at 0.67.
The RMSE, total and component parts, were reasonably low given
the distribution of the PAH456.

As we reported in Section 3.2, there is a statistically significant
decrease in the particle-bound PAH as measured at the EPA
Supersite over the 8 years of the study. This may be due to diesel
emissions regulations adopted and made effective by the California
Air Resources Board (CARB) (Union of Concerned Scientists, 2009).
Specifically, effective August 2003, CARB established a new Air
Toxics Control Measure limiting school bus idling to 5 min, or if
within 100 feet of a school, the bus must be immediately turned off
and then restarted less than 30 s before departure. The same
regulation applies to transit or delivery vehicles within 100 feet of
a school. Similar regulation limiting heavy-duty truck idling was
put into effect in January 2005. Additionally, changes to reduce
emissions from motor vehicle diesel fuel were put into effect in
2003 and January 2005.

The model presented above generated the daily spatial distri-
bution of outdoor residential PAH456 concentrations in Fresno, as
well as individual exposure estimates for each FACES participant.
Our data are representative of outdoor residential exposure, which
may be less extreme in concentrations than if samples had been
(ngm�3) observed versus the predicted from the model.



Table 4
Summary statistics for observed and model-derived estimated daily outdoor residential PAH456 concentrations. All units are in ngm�3.

Variable Number
values

Number
homes

Mean (SD) 25th % Median 75th % Range

All observed in HI substudy 497 83 6.0 (6.4) 1.6 3.8 8.4 0.7e57.1
Observed in HI substudy in winter only 171 39 9.0 (8.5) 3.1 6.3 12.4 0.7e57.1
All model-derived estimated during HI sub-study timeframe (2/2002e2/2003) 78,119 253 4.4 (3.4) 2.3 3.3 5.2 0.8e52.5
Model-derived estimated during HI sub-study timeframe in winter only 30,941 252 7.0 (4.0) 4.1 5.9 9.0 1.3e37.9
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collected directly adjacent to roadways or other sources (Baxter
et al., 2007). Previous work describing the spatial distribution of
PAHs has been limited primarily to source-to-receptor studies (Li
et al., 2003; Vardoulakis et al., 2005), small neighborhood-sized
areas (Levy et al., 2001) or to large-scale regional or national
distributions (Guo et al., 2003; Lang et al., 2007;Manoli et al., 2004;
Prevedouros et al., 2004; Thornhill et al., 2008). Levy et al. (2001)
conducted mobile monitoring for PAHs in Roxbury, MA, to deter-
mine the impact of a bus terminal on ambient concentrations of
PAHs. They were able to observe increased concentrations of PAHs
close to the bus terminal and determine, through mixed modeling,
that the bus terminal was the major contributor of ambient PAHs.
While Levy et al., had a much smaller zone of interest (approxi-
mately 2 square miles), a different modeled outcome (1-min
average PAH), and limited their sample to a single season, their
model findings are consistent with our models, i.e. that traffic is
a major contributor to ambient PAH concentrations. Large-scale
PAH spatial distribution models presented in the literature use
either emissions inventories (Lang et al., 2007; Prevedouros et al.,
2004) or a low number of air monitors (Guo et al., 2003; Manoli
et al., 2004; Thornhill et al., 2008) in order to describe the distri-
butions of PAHs. In both cases, the uncertainty regarding the spatial
distribution is high compared to our models. Urban or national
scale descriptions of PAH distributions tend to represent annual or
seasonal averages. While these can be useful for policy recom-
mendations or long-term exposure studies, they cannot address the
impact of short-term exposure on acute health outcomes.
Fig. 4. Spatial distribution for PAH456 concentrations (ngm�3) on 2/18/03, with FACES r
interpolated from a 750-foot grid across the city, at which points the LUR model was used
LUR models have become a popular method for integrating air
pollutant measurement data and environmental characteristics.
However, there have been no published studies to date of LUR
models for ambient PAH concentrations on an annual, seasonal or
daily basis. Additionally, there has been no presentation of LUR
models of similar pollutants within California’s San Joaquin Valley,
the region in which Fresno is located and one of those most
polluted regions in the United States (EPA, 2001). However, as with
other LURmodels for traffic pollutants (Hoek et al., 2008), we found
that both proximity to freeways (i.e. high volume of traffic) and the
size of the road onwhich the sample was collected were significant
factors in estimating the ambient concentration. However, PAHs are
significant because they are not merely another marker for traffic
exposure, but are implicated in negative health impacts as dis-
cussed in Section 1. As such, it is important to evaluate and model
PAHs specifically as the spatial distributions of all traffic pollutants
are not identical.

Future individual exposure estimates of PAH456 for the FACES
cohort will incorporate participants’ time spent at school and
indoors. Indoor PAH exposures are important because of the high
percentage of time that children spend indoors. Indoor PAH
concentrations cannot be predicted exclusively through infiltration
from outdoors because there are potentially significant indoor PAH
sources in residences (Naumova et al., 2002). In order to refine the
individual estimates for indoor and outdoor exposures, a model of
indoor PAH exposures is needed; one could be developed based on
the paired indoor/outdoorHI sub-study filter data (only 82 of the 497
esidential location marked for the 226 participants enrolled on that date. Surface is
to calculate concentrations.



Fig. 5. Spatial distribution for PAH456 concentrations (ngm�3) on 8/14/07, with FACES residential location marked for the 302 participants enrolled on that date. Surface is
interpolated from a 750-foot grid across the city, at which points the LUR model was used to calculate concentrations.
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matched indoor samples have been analyzed). Using time-location
data for each child, a new individual exposure estimate accounting
for time in school and indoors at home could be then calculated.

5. Conclusion

In conclusion, we have estimated individual daily outdoor PAH
exposure for the 315 participants in the FACES study for over seven
years using LUR modeling with mixed-effects regression. We found
that traffic characteristics, home heating, season, and meteorology
each play an important role in characterizing PAH exposure in
Fresno, CA. While temporal variables accounted for more of the
total variability within the model, the estimates were significantly
improved by the addition of spatial variables. Unlike toxic air
pollutants with regional-level variability, PAHs vary widely within
a single city or urban area and neighborhood-level effects are
important. The location of the child’s home within the urban
setting plays an important role in the level of exposure to PAHs that
each child experiences.
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