
Environmental Research 195 (2021) 110870

Available online 12 February 2021
0013-9351/© 2021 Elsevier Inc. All rights reserved.

Traffic-related air pollution is associated with glucose dysregulation, blood 
pressure, and oxidative stress in children 

Jennifer K. Mann, Co-first author a, Liza Lutzker, Co-first author a, Stephanie M. Holm a,h, 
Helene G. Margolis b, Andreas M. Neophytou a,c, Ellen A. Eisen a, Sadie Costello a, Tim Tyner d,e, 
Nina Holland a, Gwen Tindula a, Mary Prunicki f, Kari Nadeau f, Elizabeth M. Noth a, 
Fred Lurmann g, S. Katharine Hammond a, John R. Balmes a,h,* 

a Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA 
b Department of Internal Medicine, University of California, Davis, Davis, CA, USA 
c Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA 
d University of California, San Francisco-Fresno, Fresno, CA, USA 
e Central California Asthma Collaborative, USA 
f Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Palo Alto, CA, USA 
g Sonoma Technology, Petaluma, CA, USA 
h Department of Medicine, University of California, San Francisco, San Francisco, CA, USA   

A R T I C L E  I N F O   

Keywords: 
Children 
Metabolic syndrome 
HbA1c 
Oxidative stress 
Traffic-related air pollution 
Polycyclic aromatic hydrocarbons 

A B S T R A C T   

Background: Metabolic syndrome increases the risk of cardiovascular disease in adults. Antecedents likely begin 
in childhood and whether childhood exposure to air pollution plays a contributory role is not well understood. 
Objectives: To assess whether children’s exposure to air pollution is associated with markers of risk for metabolic 
syndrome and oxidative stress, a hypothesized mediator of air pollution-related health effects. 
Methods: We studied 299 children (ages 6–8) living in the Fresno, CA area. At a study center visit, questionnaire 
and biomarker data were collected. Outcomes included hemoglobin A1c (HbA1c), urinary 8-isoprostane, systolic 
blood pressure (SBP), and BMI. Individual-level exposure estimates for a set of four pollutants that are constit
uents of traffic-related air pollution (TRAP) – the sum of 4-, 5-, and 6-ring polycyclic aromatic hydrocarbon 
compounds (PAH456), NO2, elemental carbon, and fine particulate matter (PM2.5) – were modeled at the pri
mary residential location for 1-day lag, and 1-week, 1-month, 3-month, 6-month, and 1-year averages prior to 
each participant’s visit date. Generalized additive models were used to estimate associations between each air 
pollutant exposure and outcome. 
Results: The study population was 53% male, 80% Latinx, 11% Black and largely low-income (6% were White 
and 3% were Asian/Pacific Islander). HbA1c percentage was associated with longer-term increases in TRAP; for 
example a 4.42 ng/m3 increase in 6-month average PAH456 was associated with a 0.07% increase (95% CI: 0.01, 
0.14) and a 3.62 μg/m3 increase in 6-month average PM2.5 was associated with a 0.06% increase (95% CI: 0.01, 
0.10). The influence of air pollutants on blood pressure was strongest at 3 months; for example, a 6.2 ppb in
crease in 3-month average NO2 was associated with a 9.4 mmHg increase in SBP (95% CI: 2.8, 15.9). TRAP 
concentrations were not significantly associated with anthropometric or adipokine measures. Short-term TRAP 
exposure averages were significantly associated with creatinine-adjusted urinary 8-isoprostane. 
Discussion: Our results suggest that both short- and longer-term estimated individual-level outdoor residential 
exposures to several traffic-related air pollutants, including ambient PAHs, are associated with biomarkers of risk 
for metabolic syndrome and oxidative stress in children.   
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1. Introduction 

Metabolic syndrome is a cluster of conditions that increases the risk 
of cardiovascular disease, type 2 diabetes mellitus, and all-cause mor
tality. Insulin resistance, abdominal obesity, dyslipidemia, and hyper
tension are several of the known risk factors that contribute to the 
syndrome (Huang 2009). Metabolic syndrome is now recognized as a 
worldwide public health problem (Alberti et al., 2009) leading to calls 
for research on potentially modifiable risk factors, including air pollu
tion (Hutcheson and Rocic 2012). Evidence has been accumulating that 
risk factors likely associated with adult metabolic syndrome are also 
impacted in children through exposure to air pollutants. Such risk fac
tors include diabetes, obesity and systolic blood pressure (Faienza et al., 
2016; Lim and Thurston 2019). If modifiable environmental risk factors 
for metabolic syndrome can be identified, especially in high-risk pop
ulations, then strategies at the community and individual level – known 
and yet to be developed – to reduce childhood exposures to these factors 
should be prioritized for implementation. Here we present an exami
nation of air pollution among children as one such modifiable envi
ronmental risk factor for several indices of metabolic syndrome. 

The Children’s Health and Air Pollution Study (CHAPS) in the San 
Joaquin Valley (SJV) of California is a research project investigating the 
adverse health effects of early childhood exposure to air pollution. The 
SJV has some of the worst air pollution in the U.S., a large Hispanic/ 
Latinx population, and a high rate of poverty. Compared with other 
ethnic groups, Latinx children and adolescents in the United States are 
disproportionately affected by obesity (Ogden et al., 2012). Babey et al. 
showed that a high proportion of Latinx adults living in the San Joaquin 
Valley have pre-diabetes or type 2 diabetes (Babey et al., 2016). 

We have collected extensive air pollution exposure data for many 
years in Fresno and more recently in Bakersfield, the two most populous 
cities in the SJV, including ambient polycyclic aromatic hydrocarbon 
(PAH) concentrations (Noth et al. 2011, 2016, 2020). The spatial vari
ability in ambient PAHs in Fresno is primarily due to traffic and rail 
lines. PAHs are putative endocrine disruptors, which have been associ
ated with obesity and metabolic dysregulation, and thus are of particular 
interest (Zhang et al., 2016). 

Capitalizing on our extensive air pollution exposure data, we con
ducted a study of the potential effects of PAHs and other traffic-related 
air pollutants on anthropometric measures and biomarkers of metabolic 
dysfunction in young children enrolled in CHAPS. Our overall paradigm 
was that oxidative stress induced by exposure to traffic-related air 
pollution, especially ambient PAHs, leads to systemic inflammation that 
contributes to abnormal fat and glucose metabolism and thereby in
creases risk of obesity and diabetes. The measures and biomarkers we 
examined were anthropometry to assess childhood obesity (BMI- 
percentile, percent body fat and waist-to-height ratio), glycosolated 
hemoglobin (HbA1c) as a measure of glucose dysregulation, adipokines 
involved with both glucose and fat metabolism (leptin and adiponectin), 
8-isoprostane as a measure of oxidative stress, and blood pressure. This 
set of measurements provides an approach to the assessment of meta
bolic syndrome risk in children. Here we report the results of a cross- 
sectional analysis of the associations between residential concentra
tions of traffic-related air pollutants and markers of metabolic 
dysfunction among the CHAPS children (ages 6–8 years). 

2. Materials and methods 

2.1. Study population and recruitment 

We partnered with the Fresno Unified School District (FUSD) to re
cruit children ages 6–8 years who were enrolled in FUSD in 2015–2017. 
In 2017, FUSD had a student population of 70,725, with 88.9% of 
children classified as socioeconomically disadvantaged (California 
Department of Education 2017). Recruiting through the public 
elementary school system allowed us to recruit a group of 

predominantly low-income children, distributed spatially across Fresno. 
Since FUSD schools operate primarily as neighborhood schools, in 

order to ensure appropriate residential exposure contrasts between 
study participants, Kindergarten-6th (K-6) grade elementary schools in 
FUSD were ranked by traffic density and recruitment efforts used these 
traffic-density rankings to achieve heterogeneity of traffic-related air 
pollution exposure among study participants. Traffic density was 
assessed using California Department of Transportation (Caltrans) 
Annual Average Daily Traffic (AADT) volumes traveling in both di
rections, accessed in 2015 and using a 300-m rate of decay from road
ways (Margolis et al., 2009). Of the 65 K-6 schools in FUSD, we 
randomly sampled schools across traffic density strata for recruitment 
until we reached our desired sample size of 299 children. This sample 
size was based on power calculations using the association of ambient 
polycyclic aromatic hydrocarbons (PAHs) and %HbA1c in a previous 
sample of Fresno children. A sample size of 200 children aged 7–9 would 
detect a change of 0.0022 %HbA1c with a power of 0.8. 

Children ages 6 to 8 in the selected schools were sent home with 
flyers containing information about the study. In total, we recruited at 
55 of the K-6 FUSD schools. Interested parents contacted the study 
center to assess their child’s eligibility (age 6–8, residence in Fresno or 
Clovis for at least the past 3 months, residence within 20 km of the 
central air quality monitoring site, no plans to move from the Fresno/ 
Clovis area in the next 2 years, English- or Spanish-speaking, and no 
cancer, HIV, or autoimmune disease). Of our cohort of 299 children, n =
288 (96.3%) came from the sampled K-6 FUSD schools. However, due to 
word-of-mouth, some parents outside the selected FUSD schools con
tacted the study center to have their children participate; as long as the 
child met all eligibility criteria described above, they were invited to 
participate in the study. 

If interested and eligible, families were invited to visit the study 
center at UCSF Fresno. All study protocols were approved by the Insti
tutional Review Boards at the University of California, Berkeley; the 
University of California, San Francisco-Fresno (UCSF Fresno); and 
Stanford University. Written, informed permission was obtained from 
each accompanying parent or guardian and written child assent for 
participation was also obtained. 

To minimize participant burden and thereby maximize study 
enrollment and participation, appointments at the study center were not 
constrained to one time of day and the children were not required to fast 
prior to their visits and blood draws. Our selection of study biomarkers 
and our overall analytic approach accommodates the potential diurnal 
variation in some biomarkers and a non-fasting state. 

2.2. Study center visit 

At the study center visit, which occurred over a two-year period from 
May 2015 to May 2017, each participant’s parent or guardian was 
interviewed using a detailed, structured health and general history 
questionnaire, and for each child participant, anthropometric mea
surements were taken, blood pressure was measured, and a non-fasting 
blood sample and urine sample were obtained. 

The questionnaire was programmed using CASIC Builder™ (West 
Portal Software Corporation) for direct data entry and administered by 
trained office interview staff. The questionnaire was offered to partici
pants’ parents or guardians in either English or Spanish and assessed 
participant demographics, including sex, age and race/ethnicity, in 
addition to parental socioeconomic indicators such as annual household 
income, parental education levels, parental employment, and home 
ownership. 

The question about race and ethnicity, taken from National Coop
erative Inner-City Asthma Study (NCICAS), was “How would you 
describe [CHILD’S NAME]’s race, nationality, or ethnic background?” 
Response categories were adapted and upcoded to Hispanic/Latinx, 
Black, Non-Hispanic White, Asian/Pacific Islander and American In
dian/Alaska Native. Parents were permitted to provide up to four 

J.K. Mann et al.                                                                                                                                                                                                                                 



Environmental Research 195 (2021) 110870

3

different race/ethnicity responses. For purposes of this analysis, any 
child coded as Hispanic/Latinx was defined as Latinx, and among those 
remaining, the first other listed race was used. 

The question about annual household income was “For the last cal
endar year, what was your household income from all sources, before 
taxes?” with the response categories of <$15,000, more than $15,000 to 
$30,000, more than $30,000 to $50,000, more than $50,000 to 
$100,000, and more than $100,000. 

2.3. Outcome measurement 

The physiological and biochemical indicators measured in our 6–8 
year old children were chosen to a) reflect potential risk of development 
of metabolic syndrome in adulthood and b) feasibility of measurement. 
The components of the metabolic syndrome in adults are hypertension, 
insulin resistance, overweight/obesity (especially central adiposity), 
and hyperlipidemia (low high-density lipoprotein (HDL) and high tri
glycerides). We chose to measure blood pressure, HbA1c, BMI, percent 
body fat, waist circumference, and HDL in our participants. We chose 
not to measure either fasting blood glucose or triglycerides because of 
the logistical challenges of obtaining fasting blood samples on young 
children; HbA1c and HDL measurements do not have to be made on 
fasting blood samples. Unfortunately, due to logistical constraints, we 
only were able to obtain HDL measurements in a relatively small subset 
of the 299 participants and so did not include these measurements in the 
current analysis. 

2.3.1. Anthropometry 
All anthropometric measures (height, weight, and waist circumfer

ence) followed the National Health and Nutrition Examination Survey 
(NHANES) anthropometry protocols (CDC 2011a). Child barefoot 
standing height was measured (to the nearest 0.1 cm) using a stadi
ometer (SECA, model CE 0123), weight was measured (to the nearest 
0.1 kg) using a digital weight scale (Tanita Class III, model BWB-800 A), 
and waist circumference was measured (to the nearest 0.1 mm) using a 
retractable steel measuring tape. Each of these measures was replicated 
at least twice, and repeated a third time if the first two measures differed 
by more than a predetermined amount (>0.5 cm for standing height, 
>0.3 kg for weight, and >1.0 cm for waist circumference). The two 
measures with the smallest difference were averaged. The averaged 
waist circumference (cm) and height (cm) were used to calculate 
waist-height ratio (WHR), a measure of central adiposity. 

Definitions of underweight, normal weight, overweight, and obesity 
in children are not directly comparable with the definitions in adults. 
Instead, standardized BMI-for-age percentiles were calculated for each 
child using a CDC SAS macro that compares averaged height (cm), 
averaged weight (kg), sex, and age in months to CDC growth charts (CDC 
2016). To assess childhood obesity, we used the age-and sex-specific 5th, 
85th, and 95th percentiles of the 2000 CDC growth charts as cutoff 
criteria as follows: (1) BMI < 5th percentile: underweight; (2) BMI 5th 
to < 85th percentiles: normal weight; (3) BMI 85th to < 95th percen
tiles: overweight; (4) BMI ≥ 95th percentile: obese. In order to better 
measure adiposity among children who have very high BMIs, the 
continuous outcome we analyzed was the child’s BMI relative to the 
95th percentile of the 2000 CDC growth charts for sex and age. This 
value (BMI-percentile95) represents the percent above (or below) the 
threshold for obesity in children, defined as a BMI-percentile95 ≥ 100, 
such that a child with a BMI-percentile95 < 100 would not be obese, 
whereas a child with a BMI-percentile95 = 120 would have a BMI equal 
to 1.2 times the 95th percentile BMI for their sex and age and be 
considered severely obese. The decision to use BMI-percentile95 follows 
the CDC recommendation to use this measure for a study population 
with a large proportion of children with severe obesity (BMI-
percentile95 ≥ 120). Ten percent of our cohort had severe obesity. 

Body composition (reactance and resistance) was measured using a 
bioelectrical impedance analyzer (RJL Systems, model Quantum IV). 

Reactance and resistance were each measured three times, and the two 
measures with the smallest difference were averaged for further anal
ysis. Fat-free mass (FFM) and percent body fat were then calculated 
using average measures in previously described formulas (Goran et al., 
1993). 

2.3.2. Blood pressure 
Blood pressure was measured three times following the NHANES 

protocol (CDC 2011b) using an appropriate child cuff with an automatic 
blood pressure monitor (OMRON Model #: HEM-705CP). For each 
measure (systolic blood pressure (SBP) and diastolic blood pressure 
(DBP)), we slightly modified the NHANES protocol (CDC 2011b) by 
averaging the two values with the smallest difference to use in data 
analyses. 

2.3.3. Biomarkers of metabolic function and oxidative stress 
Blood specimens were collected by venipuncture by a trained phle

botomist, with serum collected in serum separator tubes and whole 
blood collected in EDTA vacutainers (Becton, Dickinson and Company, 
Franklin Lakes, NJ). The samples for HbA1c were picked up at room 
temperature within 24 h of draw and assayed by a commercial labora
tory (LabCorp). The samples for the leptin and adiponectin assays were 
shipped overnight on a gel pack to the Nadeau laboratory at Stanford, 
where following centrifugation, separated components were divided 
into serum and clot aliquots that were stored at − 80 ◦C. When ready to 
be assayed, serum samples were shipped frozen to the Holland labora
tory at UC Berkeley. 

Urine collected to assay 8-isoprostane and creatinine was shipped 
overnight on a gel pack to the Nadeau laboratory. If urine could not be 
shipped out within 24 h, it was frozen before shipping overnight. The 
Nadeau laboratory stored all urine at − 80 ◦C, and when it was ready to 
be assayed, urine samples were shipped frozen to the Holland 
laboratory. 

Serum adiponectin and leptin were measured in the banked serum 
samples using enzyme-linked immunoassay (ELISA) kits (RayBiotech 
Life, Norcross, GA) as previously described (Volberg et al., 2013). 
Briefly, the manufacturer-recommended protocol was used with two 
exceptions: 1) the standard curve for adiponectin was narrowed to 
smaller values for better resolution while 2) the standard curve was 
widened for leptin. These changes were necessary to tailor the ELISAs 
towards the adipokine levels observed in this population. The minimum 
detectable concentrations for adiponectin and leptin ELISAs were 10 
pg/mL and 6 pg/mL, respectively. All samples were run in duplicate and 
the values were averaged. The intra- and inter-plate coefficients of 
variance (CV) were 4% and 12%, respectively, for adiponectin and 3% 
and 15%, respectively, for leptin. 

Urinary total 8-isoprostane was measured in the banked samples 
using an ELISA kit (Oxford Biomedical Research, Rochester Hills, MI) as 
previously described (Tran et al., 2017). Briefly, urine samples were 
pre-treated with beta-glucuronidase (Oxford Biomedical Research, 
Rochester Hills, MI) prior to running the ELISA. The limit of detection 
(LOD) for 8-isoprostane concentration was 0.08 ng/mL. Undetected 
oxidative stress measures were replaced with the LOD divided by the 
square root of 2. Additional quality assurance/quality control (QA/QC) 
provisions included repeats of 5% of samples and blanks, and internal 
lab controls with good reproducibility of 8-isoprostane (coefficient of 
variation <7%). Creatinine levels in the urine samples were analyzed 
using a urinary creatinine ELISA kit (Oxford Biomedical Research, 
Rochester Hills, MI). Samples were randomized across plates and the 
coefficient of variation for creatinine was less than 3%. All 8-isoprostane 
concentrations were adjusted to account for urinary dilution by dividing 
8-isoprostane concentrations (ng/mL) by creatinine levels (mg/dL) with 
results reported in ng/mg creatinine. 
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2.4. Air pollution exposure assessment 

The ultimate goal of our air pollution exposure assessment was to 
model pollutant exposures for each study participant. To achieve this 
goal, we used a combined field monitoring and modeling approach to 
estimate individual-level air pollution exposure estimates for the 299 
participants, as it is not feasible to conduct personal sampling for mul
tiple pollutants on young children for up to 9 years of exposures. In the 
sections below we provide some detail on the field monitoring (section 
2.4.1), exposure model building (section 2.4.2), and exposure assign
ment (section 2.4.3). Greater detail on the monitoring and model 
building can be found elsewhere (Noth et al. 2011, 2016, 2020; Tager 
et al., 2005). 

2.4.1. Air pollution measurement data 
We collected air pollution measurements using both continuous daily 

pollutant concentrations measured at fixed air monitoring stations in 
Fresno and daily concentrations obtained from periodic spatially 
intensive sampling campaigns. 

Continuous daily concentrations were collected for four different 
pollutants. Hourly, quality-assured, ambient pollutant (NO2 and PM2.5) 
concentrations and meteorological data collected at the local air pollu
tion control district’s Fresno central site monitoring station (Garland) 
and three other sites in Fresno were obtained from the U.S. Environ
mental Protection Agency’s (EPA) Air Quality System (AQS). Black 
carbon (BC) was determined from Aethalometer™ (model AE42; Magee 
Scientific, Berkeley, CA) measurements of the optical absorption of 
PM2.5 ambient aerosol at 880 nm, and particle-bound PAHs were 
monitored with the PAS 2000 (EcoChem Analytics, League City, TX). 
The PAS2000 uses a photoelectric aerosol sensor to measure the levels of 
particle-bound ambient PAH with three or more rings (pPAH). We used 
data collected from these real-time continuous monitors from 2002 
through 2017. The air pollution data were subject to rigorous checks for 
quality assurance. These included range and persistence checks, com
parison of values at nearby monitoring sites, and consistency with his
torical temporal and/or diurnal patterns for each pollutant. 
Completeness was uniformly assessed using a 75% criterion. 

During the periodic, spatially intensive sampling campaign in 
2014–2015, daily filter samples were collected and subsequently 
analyzed for NO2, elemental carbon (EC) and 37 individual PAHs and 
oxygenated PAHs, as described elsewhere (Noth et al. 2011, 2016, 
2020). These sampling sites were selected to represent traffic (road and 
rail), industrial and residential sources of pollutants. PAH analyses were 
performed by gas chromatography/mass spectrometry (HP 6890/5972 
or Agilent 7820/5977 E) in the selected ion-monitoring mode with a 30 
m (5%-Phenyl)- methylpolysiloxane column (Agilent HP-5MS). In this 
analysis, we used the sum of the measured concentrations of 4-, 5-, and 
6-ring PAH compounds (fluoranthene, benz[a]anthracene, chrysene, 
benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]flouoranthene, benzo 
[ghi]perylene, indeno[1,2,3-cd]pyrene, and dibenz[a,h]anthracene) 
(Noth et al. 2011, 2016, 2020). We refer to this sum as PAH456. 

2.4.2. Air pollution exposure models 
We used two methods to model outdoor air pollution concentrations 

– interpolation (for PM2.5) and regression modeling (for all other pol
lutants we considered). We estimated outdoor concentrations of PM2.5 
through interpolation from daily fixed site data using inverse distance- 
squared weighting. Up to four sites were included in the model with a 
maximum allowed radius from each participant’s residence of 50 km. 
The interpolation model used EPA’s AQS ambient data for the 
2013–2017 time period. 

Linear regression with mixed effects (random and fixed) was used to 
develop spatial-temporal models of daily concentrations for PAH456, 
EC, and NO2, incorporating air pollution measurement data from 2002 
to 2015 (Noth et al. 2011, 2020). In doing so, we make the assumption 
that we can use the spatial and temporal relationships observed in our 

air pollution measurement data and apply those to unsampled locations 
and times. Making this assumption is necessary to improve spatial pre
dictions where high regional variability in pollutant levels can result in 
exposure misclassification bias in epidemiology studies (Özkaynak et al., 
2013). Sampling location and date were treated as random effects in 
order to simultaneously capture the temporal and spatial components. 
Covariates considered for each exposure model include the continuously 
measured daily pollutant concentrations (pPAH, BC, NO2) at fixed sites, 
relative humidity, temperature, wind speed, atmospheric stability, dis
tance to nearest freeway, Caline4 dispersion model estimates of con
centrations from local traffic, distance to nearest rail lines, and amount 
of rail yard, urban, and open space land use within 1 km radius circular 
buffers (Supplemental Table 1). The inclusion criteria for covariates 
were their statistical significance and percentage of variance explained 
(i.e., improvement in explanatory power). Using the between and within 
sampling location and date covariance estimates, the models for 
PAH456, EC, and NO2 explain 53%, 95%, and 99% of the observed 
temporal variance, and 74%, 88%, and 74% of the observed spatial 
variance. 

2.4.3. Individual-level air pollution exposure estimates 
During their visit to the study center, parents or guardians were 

asked to report the street address, city and state of all residences at 
which the child participant had lived since birth. Only addresses at 
which the child had lived for at least 1 month were recorded. Each 
address was geocoded using ESRI Software (Redlands, CA) and/or 
Google Earth to create a lifetime, residential history for each participant. 

Daily exposures for each participant for each day during the year 
prior to the study visit were estimated using the residential location on 
the day of interest (taken from the reported residential histories) and 
either the interpolated daily value of PM2.5 or, for PAH456, EC and NO2, 
the daily spatial-temporal parameters in each pollutant model (details in 
Supplemental Table 1). Using daily exposure estimates at the primary 
residential location, we assigned exposures for each participant for 1- 
day lag, and aggregated daily exposures to 1-week, 1-month, 3-month, 
6-month, and 1-year averages prior to each participant’s visit date. 

2.5. Statistical analysis 

Model covariates were based on a directed acyclic graph (Supple
mental Fig. 1). Race/ethnicity, age, sex and socioeconomic status (SES) 
were likely to impact exposure as well the outcome and so were included 
in all models. Because our air pollution exposures are based on the 
residential locations of our study participants, we considered race/ 
ethnicity because racist historical housing practices in Fresno such as 
redlining and racially restrictive covenants (Zuk 2013; Nardone et al., 
2020), may have resulted in the uneven distribution of race/ethnicity 
groups across residential locations in Fresno and hence, differential 
proximity to heavily trafficked roadways and rail lines and thus 
traffic-related air pollution (TRAP) exposure. Age (months) and sex were 
included as they might be related to a participant’s outside activity and 
therefore to TRAP exposure. SES was included because it might also be 
related to differential TRAP exposure; SES was modeled using annual 
family income <$15,000 (28% of the study population). Weight was not 
included in the models because it was considered to be on the causal 
pathways from exposure to several of the outcomes. Logged values for 
adiponectin, leptin, BMI-percentile95, and 8-isoprostane were used 
because the distributions of the residual values for these outcomes were 
skewed; the other outcome variables (HbA1c, WHR, percent body fat, 
SBP, DBP) were used untransformed. For blood pressure models, height 
was added to the models as it is strongly associated with blood pressure 
in children. Descriptive statistics for outcomes, pollutants, model 
covariates were calculated using SAS 9.4 (Cary, NC: SAS Institute). 

Next, we used generalized additive models (mgcv package in R) with 
a smooth term for study day (maximum degrees of freedom = 15) to 
estimate associations between each air pollutant exposure and each 
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outcome (anthropometric index (log BMI-percentile95, waist-to-height 
ratio (WHR), percent body fat percentage), HbA1c, log serum adipo
kines (leptin and adiponectin), log urinary 8-isoprostane (creatinine 
adjusted), and blood pressure (systolic and diastolic)). The smooth term 
for study day allowed us to adjust for non-monotonic changes over time 
and secular trends in the outcome. 

To compare results across different pollutants, findings are presented 
as change in the outcome associated with an interquartile range change 
(IQR) in each pollutant, using the IQR calculated for that particular 
averaging period. For non-logged outcomes (WHR, percent body fat, 
HbA1c, and systolic and diastolic blood pressure), effect estimates 
represent the expected change to the absolute value of the outcome with 
an IQR-unit change. For logged outcomes (leptin, adiponectin, 
creatinine-adjusted 8-isoprostane, and BMI-percentile95), effect esti
mates represent the expected percent change to the outcome with an 
IQR-unit change derived using the ß coefficient and standard error (SE) 
as follows: 

Effect Estimate=
(
e(IQR* β) − 1

)
*100  

95% CI =
(
e(IQR*(β ±1.96*SE)) − 1

)
*100 

Analyses were restricted to exposures of 3-month, 6-month and 1- 
year averages for HbA1c, BMI-percentile95, WHR, percent body fat, 
adiponectin and leptin since these outcomes change slowly over time. 
Even though HbA1c is present in red blood cells, which turnover in 
approximately 115 days, their production could be influenced by 
inflammation occurring on a longer scale, and thus timeframes longer 
than 3 months were also considered. For SBP, DBP and 8-isoprostane, we 
also analyzed associations with 1-day lag, and 1-week and 1-month 
average exposures because short-term exposures were thought to be 
important for these outcomes. Estimated effects are presented in sup
plemental tables to the thousandths place for all models to balance 
consistency in our reporting, while estimates in the body of the paper are 
presented with an appropriate number of significant digits based on 
measurement accuracy. We fit a separate model for each averaging time 
for each pollutant. We did not adjust for multiple comparisons, but 
rather chose to interpret the results of pollutant-specific models in the 
context of trends by considering findings in groups. We interpret the 
findings for a single time frame across the entire group of traffic-related 
pollutants or for a single pollutant across all time frames, rather than 
focusing on results from individual models. 

3. Results 

3.1. Descriptive statistics 

The study population consisted of 299 children. The sociodemo
graphic characteristics of the participating children are shown in 
Table 1. The potential participants were screened at ages 6–8 and seen 
for their baseline visit at ages 6–9. The population was 53% male, 80% 
Hispanic/Latinx, and 11% Black. The remaining participants were Non- 
Hispanic White (6.0%) and Asian/Pacific Islander (3.0%). Nearly 80% of 
the study population lived in rented homes and nearly 30% was from a 
family with <$15,000 annual household income. Using CDC criteria, 
25% of the children were obese and another 16% were overweight. 

Table 2 shows summary outcome data (HbA1c, leptin, adiponectin, 
urinary 8-isoprostane, systolic and diastolic blood pressure, WHR, 
percent body fat, and BMI-percentile95), as well as the number of 
children with data available for each outcome. The Q3 values of 95.0 
and 100.0 for BMI for age and sex and BMI for age and sex relative to the 
95th percentile, respectively, correspond to the 25% of our cohort which 
is obese. Ten percent of the children had severe obesity (BMI-percen
tile95 ≥ 120, data not shown). Twenty-nine percent of the children had 
HbA1c values ≥ 5.7, a level that is an indicator of pre-diabetes (Amer
ican Diabetes Association 2010). Using the ratio of blood pressure to 

height, a simplified method for screening children for their potential risk 
for hypertension in adulthood (Ma et al., 2016; Xi et al., 2016), 39% had 
high SBP, 20% had high DBP, and 15% had both high SBP and DBP (data 
not shown). A correlation matrix of the outcomes is shown in Supple
mental Table 3a. 

Summary data for modeled pollutant concentrations (EC, PAH456, 
NO2, and PM2.5) for each of the averaging times are presented in Sup
plemental Table 2. A correlation matrix of the exposure periods is shown 
in Supplemental Table 3b. 

3.2. Associations between air pollutant exposures and metabolic outcomes 

The associations between traffic-related air pollutants (TRAP) and all 
longer-term anthropometric measures and biomarkers (i.e., HbA1C, 
WHR, percent body fat, BMI-percentile95, leptin and adiponectin) can 
be seen in Supplemental Table 4 and select measures/biomarkers are 
shown in Fig. 1, while the associations between traffic-related air pol
lutants and anthropometric measures and biomarkers that may vary 
over both short-term and longer-term periods (i.e., SBP, DBP, and 8-iso
prostane) can be seen in Fig. 1 and Supplemental Table 5. The patterns in 
these results are described below. 

3.2.1. Longer-term metabolic outcome measures 
When considering concentrations over the prior 6 months, TRAP is 

Table 1 
Demographic characteristics of study participants (n = 299).  

Characteristic Mean (SD) % 

Age (months) 95.6 (7.0)  
Weight (kg) 31.5 (8.8)  
Male  53.2 
Race/Ethnicity   
Hispanic/Latinx  79.6 
Black  11.4 
Non-Hispanic White  6.0 
Asian/Pacific Islander  3.0 
Primarily Spanish-speaking  17.4 
Rentera  78.0 
Annual household income <$15 Ka  28.0 
Obeseb  24.8 
Overweightb  16.1  

a Responses were refused, not applicable or unknown for n = 3 for each of the 
home renting and household income questions. 

b Using age-and sex-specific percentiles of the 2000 CDC growth charts, obese 
was defined as BMI ≥ 95th percentile and overweight was defined as BMI 85th to 
<95th percentiles. 

Table 2 
Descriptive statistics for measures and biomarkers of metabolic syndrome.  

Measure or Biomarker N Mean Median (Q1, Q3) 

Glycosylated hemoglobin A1C (%) 275 5.5 5.5 (5.4, 5.7) 
Leptin (ng/ml)a 271 1.6 0.9 (0.7, 1.6) 
Adiponectin (μg/ml)a 276 25.7 20.3 (9.9, 34.2) 
Urinary 8-isoprostane (creatinine-adjusted) 

(ng/mg)a 
290 5.5 4.4 (2.8, 6.6) 

Systolic blood pressure (mmHg) 296 105.9 104.5 (98.0, 
113.5) 

Diastolic blood pressure (mmHg) 296 64.9 64.5 (59.5, 69.5) 
BMI-percentile for age and sex 299 71.0 77.9 (53.4, 95.0) 
BMI for age and sex relative to the 95th 

percentileb 
299 92.1 85.9 (78.7, 

100.0) 
Waist-to-height ratio 244 0.5 0.5 (0.5, 0.6) 
Percent body fat 299 27.8 28.3 (20.9, 35.6)  

a Leptin, adiponectin, and 8-isoprostane were not normally distributed and 
were logged for analysis. 

b This was the measure used in our models, based on CDC recommendations if 
a large proportion of children in the study population have severe obesity (BMI- 
percentile95 ≥ 120). 
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associated with increases in HbA1c (Fig. 1A). While these results can be 
seen in detail in Supplemental Table 4, HbA1c increased approximately 
0.04–0.07% per IQR increase in each of the pollutants. For EC, a 0.23 
μg/m3 increase in the 6-month average was associated with a 0.042% 
increase in HbA1c (95% CI: 0.003, 0.081). For NO2, a 3.42 ppb increase 
in the 6-month average was associated with a 0.044% increase in HbA1c 
(95% CI: − 0.004, 0.093). For PAH456, a 4.42 ng/m3 increase in the 6- 
month average was associated with a 0.073% increase in HbA1c (95% 
CI: 0.011, 0.136). For PM2.5, a 3.62 μg/m3 increase in the 6-month 
average was associated with a 0.055% increase in HbA1c (95% CI: 
0.007, 0.102). A similar pattern of increases was seen for 3-month 
average exposures, though fewer of the pollutant relationships met 
statistical significance at this time frame. Averaging exposure over 1 
year, there is no longer a consistent pattern of effects between TRAP and 
HbA1c. 

Associations between TRAP and longer-term anthropometric mea
sures other than HbA1c were less notable. However, small increases in 
BMI were consistently, but not significantly, associated with increased 
TRAP across pollutants and exposure windows, especially at 3- and 6- 
month average exposures (Fig. 1B and Supplemental Table 4). Though 
significance was reached in one isolated finding (1-year average NO2 
and WHR; Fig. 1C), there was no clear pattern relating TRAP exposure to 
WHR or percent body fat (Supplemental Table 4). There were no sig
nificant associations between TRAP and levels of leptin or adiponectin at 
3, 6, or 1-year average exposures (Supplemental Table 4). 

3.2.2. Short- and longer-term metabolic outcome measures 
While not always achieving statistical significance, we observed 

small increases in blood pressure measures (both SBP and DBP) associ
ated with pollutant exposure over short periods, with the effect 
increasing in magnitude across all TRAPs from the 1-day lag up to the 1- 
or 3-month average exposure, and then decreasing in magnitude down 
to the 1-year average exposure (Fig. 1D and E and Supplemental Tables 4 
and 5). Statistical significance of effect was only consistently seen for the 
association between NO2 and SBP; NO2 was associated with increased 
SBP for medium- and longer-term (1-month, 3-month, 6-month and 1- 
year) average exposures. The largest estimate was for 3-month 
average NO2, where a 6.2 ppb increase was associated with a 9.4 
mmHg increase in SBP (95% CI: 2.8, 15.9). The average short-term (1- 
day and 1-week) exposures to NO2 were not significantly different than 
zero in their relationship to SBP, suggesting that the effects are more 
strongly related to medium- and longer-term exposures (Fig. 1D). 

Short-term average TRAP exposure (1-day, 1-week and 1-month) 
was consistently and significantly associated with creatinine-adjusted 
urinary 8-isoprostane (Fig. 1F and Supplemental Table 5). Estimated 
percent changes ranged from a 9.8% increase in 8-isoprostane for a 0.37 
μg/m3 increase in 1-week EC (95% CI: 0.7–19.6), to a 29.6% increase in 
8-isoprostane for an 8.15 ng/m3 increase in 1-month PAH456 (95% CI: 
10.8–51.5). There were no associations between longer-term TRAP ex
posures and 8-isoprostane. 

Fig. 1. Effects of Traffic Related Air Pollutants on Anthropometric Measures and Biomarkers of Metabollic Syndrome associated with an IQR increase in exposure.  
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4. Discussion 

In a well-characterized cohort of young children, we found that 
estimated average ambient residential exposure to several traffic-related 
air pollutants was associated with a marker of potential risk for meta
bolic syndrome (HbA1c), as well as oxidative stress (urinary 8-isopros
tane), a hypothesized mediator of air pollution-related health effects. 
The associations with HbA1c were seen for 3- and 6-month average 
pollutant exposures, as expected based on the known half-life of HbA1c, 
while those for urinary 8-isoprostane were observed with shorter aver
aging times (i.e., 1-day lag, and 1-week and 1-month average pollutant 
exposures). Animal studies have shown that 8-isoprostane levels in
crease quickly (within hours) in response to oxidative stress, yet urinary 
levels are relatively stable day to day, making this a reliable biomarker 
(Roberts and Morrow, 2000). The known quick response of 8-isopros
tane fits with our findings that air pollution exposures were related to 
this biomarker over the short term (up to one month or 3 months, 
depending on the pollutant), but no effects were seen for longer expo
sure windows. There were also consistent patterns in the associations 
between traffic-related air pollutants and other outcomes, even when 
individual effects did not reach statistical significance. Blood pressure 
was associated with TRAP, with the largest effect for the 3-month 
exposure window and small increases in BMI were consistently associ
ated with increased TRAP. 

Both human exposure and observational studies have demonstrated 
that air pollution can increase blood pressure in adults (Yang et al., 
2018; Li et al., 2020); though data are sparse in children, we anticipated 
that there may be similar effects (Zeng et al., 2017). Because the 
mechanisms that affect adult blood pressure likely behave similarly in 
children, we expected potential short-term effects of pollutants on blood 
pressure (mechanistically these could occur via acute changes in endo
thelial function, autonomic regulation, inflammation and oxidative 
stress; Brook et al., 2009), and we also expected that there could be 
strong long-term effects (related to vascular remodeling and other 
adaptation or maladaptation to chronic exposures). It may simply be 
that air pollutant effects on long-term blood pressure are of smaller 
magnitude than effects on short-term blood pressure (especially given 
that there is more short-term variability in blood pressure compared to 
long-term). However, seasonality effects may also mask the relation
ships at the 6-month and 1-year intervals. In Fresno, there are func
tionally two seasons: a hot/dry season (March through October) and a 
cold/wet season (November through February). Thus, the longer expo
sure windows are likely to cross seasons and may obscure an effect that 
would be apparent either within a single season or across multiple 
complete season cycles. 

Motor vehicle and rail line emissions are the likely source of the 
pollutants for which we report associations – PAHs, NO2, EC, and PM2.5 
– in the Fresno area. To our knowledge, this is the first study to show 
associations between ambient PAH concentrations and increased levels 
of HbA1c and 8-isoprostane. These results support measurement of 
ambient PAHs as another marker of the TRAP mixture. 

Although there is controversy whether the designation of metabolic 
syndrome can be applied to young children, certain biomarkers for this 
condition are present in this age group, and the antecedents of metabolic 
syndrome in adults likely begin in childhood (Faienza et al., 2016). For 
example, elevated HbA1c in children predicts risk for type 2 diabetes 
(Vijayakumar et al., 2017). Similarly, childhood blood pressure has been 
shown to predict both hypertension and metabolic syndrome in adult
hood (Sun et al., 2007; Chen et al., 2008), as well as carotid 
intima-media thickness, a measure of the progression of atherosclerotic 
disease (Koskinen et al., 2019). A report from Saudi Arabia suggested 
that exposure to ambient PAHs was associated with brachial artery 
distensibility and blood pressure in adolescent males (Trasande et al., 
2015). The outcomes assessed in our study were selected to represent 
indices of metabolic syndrome. 

It has been specifically shown that childhood exposures to 

secondhand tobacco smoke can increase risks for adverse cardiovascular 
outcomes in adults (Chen et al., 2015; Gall et al., 2014). Because 
secondhand smoke and ambient air pollution share an exposure route, 
many chemical constituents, and mechanisms of toxicity, such as 
oxidative stress and elevated chronic systemic inflammation, childhood 
exposures to outdoor air pollution may also contribute substantially to 
the risk of metabolic syndrome later in life (McConnell et al., 2015). 

Evidence that air pollution can contribute to type 2 diabetes in adults 
has been emerging over the past decade (Thiering and Heinrich 2015; 
Eze et al., 2015; Li et al. 2015, 2016a), although the data are less clear 
for obesity (Chiu et al., 2017; An et al., 2018). More recently, several 
studies have reported associations between air pollution and both dia
betes and obesity in children. Of particular interest, a study in New York 
City reported associations between maternal exposures to ambient PAHs 
during pregnancy and increased BMI and body fat composition in the 
offspring at age 7 (Rundle et al., 2012). A study from Iran showed as
sociations between urinary concentrations of PAH metabolites and 
obesity in children ages 6–18 (Poursafa et al., 2018). A more recent 
study in New York City reported that higher prenatal and perinatal ex
posures to PM2.5 are associated with increased HbA1c (Moody et al., 
2019). With regard to pre-diabetes, two reports in overweight and obese 
Los Angeles children of color showed higher fasting insulin levels, lower 
insulin sensitivity, higher acute insulin response to glucose, decreased 
β-cell function, and higher fasting glucose levels with long-term expo
sures to NO2 and PM2.5 (Alderete et al., 2017; Toledo-Corral et al., 
2018). These findings suggest potential mechanisms by which TRAP 
exposures impact type 2 diabetes risk. Long-term air pollution exposure 
may both decrease insulin-dependent glucose uptake leading to insulin 
resistance and impair β-cell function resulting in reduced insulin secre
tion (Park 2017). Experimental animal data suggest upstream mecha
nistic pathways linking traffic-related air pollution exposure to insulin 
resistance and β-cell dysfunction that include oxidative stress, systemic 
inflammation, and adipose tissue inflammation (Rajagopalan and Brook 
2012). However, to date, these pathways have not been adequately 
studied in children. 

Chronic systemic inflammation is known to be associated with in
sulin resistance that is characterized by abnormal production of adipo
kines such as leptin and adiponectin (Rajagopalan and Brook 2012; Piya 
et al., 2013). Leptin upregulation is associated with chronic systemic 
inflammation; whereas, adiponectin is associated with 
anti-inflammatory functions. We hypothesized exposures to 
traffic-related air pollutants would induce inflammation that would, in 
turn, affect levels of these adipokines in our study children. However, we 
did not find significant associations between either short-term or 
longer-term exposure to our air pollutants of interest and adipokine 
levels. Mean adiponectin levels were much higher in both boys and girls 
aged 7 and 8 in our cohort compared with European children in the 
IDEFICS cohort (Erhardt et al., 2014). However, the mean adiponectin 
values for our study population were lower than those for a cohort of 
demographically similar 9-year-old Mexican-American children from 
Salinas, CA (Volberg et al., 2013). Mean leptin values in our cohort were 
lower for both boys and girls than in the IDEIFCS cohort and lower than 
both boys and girls in the Salinas cohort (Erhardt et al., 2014; Volberg 
et al., 2013). 

A paper from the Framingham Heart Study reported that living near 
a major roadway and exposure to traffic-related air pollution were 
associated with glucose dysregulation, but there was no such association 
with either leptin or adiponectin (Li et al., 2018). Our pattern of findings 
with significant relationships between HbA1c and TRAP exposures fits 
with these prior results. Other studies of air pollution exposure and 
adipokines, both experimental animal and epidemiological, have re
ported mixed results (Sun et al., 2009; Wang et al., 2014; Wolf et al., 
2016). 

Oxidative stress is one pathway by which exposure to ambient air 
pollutants can induce systemic inflammation. We and others have pre
viously used 8-isoprostane, a marker of lipid peroxidation, to assess air 
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pollution-induced oxidative stress (Chen et al., 2007; Li et al., 2016b), 
though some animal evidence suggest that it may be produced from 
other sources of inflammation (van’t Erve et al., 2016). The mean uri
nary 8-isoprostane level in our cohort, adjusted for creatinine, was 
higher than the mean value from the 9-year-old Salinas cohort (Tran 
et al., 2017). Importantly, short-term exposures to all four traffic-related 
air pollutants (PAH456, PM2.5, EC, and NO2) were significantly associ
ated with elevated urinary concentrations of 8-isoprostane, supporting 
oxidative stress and possibly inflammation as mediators of the adverse 
metabolic effects of traffic-related air pollution. 

This study has multiple strengths, including high-quality, individual- 
level exposure assessment for traffic-related air pollutants, careful 
outcome assessment for several biomarkers of pre-metabolic syndrome, 
and a study population of vulnerable children of color. In particular, our 
ability to assign exposures to ambient PAHs for our study participants is 
unique. The combination of measures of obesity, glucose dysregulation, 
and oxidative stress, and measurement of blood pressure provide a 
battery of biomarkers that together likely represent risk for metabolic 
syndrome later in life. Our study population of almost 90% Latinx or 
Black children who have high prevalence of increased BMI, HbA1c, and 
blood pressure, constitutes a high-risk group. 

Despite these strengths, our study has some limitations. Because the 
analysis is cross-sectional, the temporality of exposure-response cannot 
be assessed. The cross-sectional nature of our analysis also may obscure 
within-person variability in our measured outcomes, such as blood 
pressure, where variation may not be well captured using single point- 
in-time measurements. We are currently following our cohort of chil
dren longitudinally, and future longitudinal analyses will be able to 
address some of these limitations of our current cross-sectional analysis. 

In addition, our results could be affected by residual confounding. 
Although we considered inclusion of a number of variables in our 
models, our adjustment for socioeconomic factors (using household in
come) may not have been sufficient to account for all other relevant 
social and environmental factors. We also performed a large number of 
statistical tests, examining nine outcomes and four pollutants with 
multiple exposure periods (n = 144 comparisons in total). While per
forming these multiple comparisons increases the likelihood of incor
rectly rejecting a null hypothesis, we have been careful here not to draw 
attention to any one particular association. Instead, we describe 
consistent patterns in the relationships between several highly corre
lated traffic-related air pollutants and multiple markers of metabolic 
syndrome, and these trends appear to be robust. 

We also do not have sufficient data on lipid metabolism and markers 
of systemic inflammation to allow a more complete characterization of 
the antecedents of metabolic syndrome in our child participants. We are 
in the process of collecting longitudinal data for this cohort at ages 9–11 
and will be able to better characterize participants as well as better 
address temporality. It is curious that 1-year averages of PAH456, PM2.5, 
and EC were generally not associated with the outcomes we examined. It 
is possible that this is because the vast majority of our participants are 
from a relatively small geographic area – the part of Fresno served by 
FUSD – and thus the spatial and temporal variability in annual averages 
may not have been sufficient to detect associations with these longer- 
term exposures. Future analyses using distributed lag models to flex
ibly model yearly exposures without averaging are planned. 

In conclusion, the results of this study suggest that estimated 
individual-level outdoor residential exposures to several traffic-related 
air pollutants, including ambient PAHs, are associated with measures 
and biomarkers of metabolic syndrome (increased HbA1c and blood 
pressure) and of oxidative stress (increased urinary 8-isoprostane) in a 
well-characterized cohort primarily consisting of low-income children 
of color. Our results provide evidence that exposure to traffic-related air 
pollution may contribute to risk of obesity and glucose dysregulation in 
high-risk children of color, of whom there are many in the United States. 
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Wiewiorowska, M., Aounallah-Skhiri, H., Zong, X., Motlagh, M.E., Kim, H.S., 
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