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A B S T R A C T

Prenatal exposure to ambient air pollution has been associated with preterm birth in several studies. Associations
between air pollution and gestational or pre-existing diabetes have been hypothesized but are not well estab-
lished. We examined the association between air pollution exposure in pregnancy and gestational diabetes and
whether the association between air pollution and preterm birth is modified by diabetes (gestational or pre-
existing) in a highly polluted area of California.

Birth certificates and hospital discharge data from all singleton births from 2000 to 2006 to women living in
four counties in the San Joaquin Valley of California were linked to criteria air pollution and traffic density
measurements at the geocoded maternal residence. Air pollutants were dichotomized at the highest quartile and
compared to the lower three quartiles.

Logistic regression models were adjusted for maternal race-ethnicity, age, education, payment of birth ex-
penses, and prenatal care. There were consistent inverse associations between exposure to air pollution during
the first two trimesters and gestational diabetes (statistically significant odds ratios (OR) less than 1). When
stratified by any diabetes (gestational or pre-existing), associations between air pollution exposure during
pregnancy and categories of preterm birth (20–27, 28–31, 32–33, 34–36 weeks) were generally similar with few
exceptions of exposures to carbon monoxide (CO) and particulate matter< 2.5 µm (PM2.5). Those with diabetes
and exposure higher levels of CO (in first trimester or entire pregnancy) or PM2.5 (in first trimester) had higher
risk of extremely preterm birth (20–27 weeks) compared with those without diabetes.

The associations between traffic-related air pollution and gestational diabetes were in the unexpected
(“protective”) direction. Among those with any diabetes, associations were stronger between CO and PM2.5 and
extremely preterm birth.

1. Introduction

Prenatal exposure to ambient air pollution has been associated with
preterm birth in several studies (Stieb et al., 2012; Pereira et al., 2014;
Schifano et al., 2013; Li et al., 2017). In a previous investigation of the
current cohort, preterm birth was associated with increased exposure to
particulate matter< 10 (PM10) and 2.5 µm (PM2.5) during pregnancy.
The associations were strongest with exposure in the second trimester,
particularly for early preterm births (< 28 weeks gestation) (Padula
et al., 2014a).

It has been hypothesized that adult exposure to air pollution may be

associated with Type 2 diabetes and both the experimental and epide-
miological evidence in support of this hypothesis are robust (Eze et al.,
2015a; Rajagopalan and Brook, 2012). Long-term air pollution ex-
posure may both decrease insulin-dependent glucose uptake leading to
insulin resistance and impair β-cell function resulting in reduced insulin
secretion (Park, 2017). Upstream mechanistic pathways linking air
pollution exposure to insulin resistance and β-cell dysfunction that have
been suggested by experimental animal data include oxidative stress
and systemic inflammation (Rajagopalan and Brook, 2012). A sys-
tematic review and meta-analysis of ambient air pollution in adults and
diabetes studies in Europe and North America observed an 8–10%
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increase in odds of diabetes for a 10 μg/m3 increase in PM2.5 or nitrogen
dioxide (NO2) (Eze et al., 2015b).

Several studies have investigated the associations between air pol-
lution and diabetes in pregnancy. One study in Taiwan found associa-
tions between PM2.5 and oral glucose tolerance tests, a screening test for
gestational diabetes, during pregnancy (M.C. Lu et al., 2017; M.-C. Lu
et al., 2017). Another study found preconception and early pregnancy

nitrogen oxides (NOX) exposure were associated with gestational dia-
betes (Robledo et al., 2015a, 2015b). Exposure to PM2.5 and ozone (O3)
during pregnancy was associated with gestational diabetes in a study in
Florida. A prospective cohort in Boston, Massachusetts found an asso-
ciation between traffic-related air pollution and impaired glucose tol-
erance, but not gestational diabetes (Fleisch et al., 2014). In a retro-
spective study also in Massachusetts, no consistent association between

Table 1
Distribution of covariates by gestational age in births in the four most populous counties in San Joaquin Valley, California, 2000–2006.

Covariate Gestational age in weeks (%)* Total N=252,205

37–42 n=223,417 34–36 n=21,225 32–33 n=3702 28–31 n=2550 20–27 n=1311

Spontaneous preterm birth† 35.8 47.9 59.1 69.3 41.0
Maternal age (years)

< 20 13.3 15.2 16.9 20.3 20.8 13.6
20–24 28.9 28.7 28.5 28.3 26.4 28.9
25–29 27.7 25.6 23.3 22.9 21.4 27.3
30–34 19.4 18.2 18.1 15.3 18.7 19.2
> 35 10.8 12.3 13.2 13.2 12.7 11.0

Race/ethnicity
White, non-Hispanic 30.6 26.0 23.2 24.1 23.0 30.0
Asian 7.4 8.7 8.3 9.4 7.9 7.6
African-American 4.9 6.7 8.0 9.1 9.2 5.1
Hispanic 55.7 57.3 59.2 56.1 58.4 55.9
Other 1.3 1.3 1.3 1.3 1.5 1.31.5

Education
< High school 12.1 12.5 13.9 11.7 11.1 12.1
High school 53.2 57.6 59.2 62.8 60.8 53.8
Some college 21.5 19.9 18.6 17.7 19.8 21.3
College degree 13.2 10.0 8.3 7.8 8.4 12.8

Medi-Cal 53.4 60.2 64.5 64.0 60.2 54.3
Prenatal care in 1st trimester 82.1 78.3 73.9 68.4 67.3 81.4
Low SES 17.3 20.2 23.5 22.6 21.5 17.7
Diabetes diagnoses
Gestational diabetes 4.9 6.2 6.1 5.3 3.1 5.0
Pre-existing diabetes 0.7 1.4 1.6 1.5 1.1 0.8

Hypertension diagnoses
Pregnancy-induced 3.9 8.5 12.3 11.8 6.4 4.5
Pre-existing 1.0 1.9 3.1 3.0 2.5 1.1

Cesarean section 25.4 29.1 35.6 43.9 41.0 26.1
First born 35.3 33.0 34.3 35.8 41.0 35.2
County
Fresno 32.7 35.2 35.0 33.1 37.0 32.9
Stanislaus 23.2 24.8 26.7 25.2 23.8 23.4
Kern 25.5 23.0 21.1 23.1 22.1 25.1
San Joaquin 18.7 17.0 17.2 18.6 17.1 18.5

Year
2000 13.2 12.5 12.5 12.8 15.7 13.1
2001 13.4 12.6 11.8 13.2 12.5 13.3
2002 13.7 13.0 13.3 12.3 12.4 13.6
2003 13.9 13.9 13.8 13.3 13.4 13.9
2004 14.4 14.5 14.7 14.2 15.0 14.4
2005 15.1 16.0 15.3 16.8 15.0 15.2
2006 16.5 17.6 18.6 17.4 16.1 16.6

Percentage of total was calculated among preterm, i.e. 11791/28788 * 100=41.0%.
* Percentages may not equal 100 owing to rounding.
† Spontaneous preterm birth identified as those births< 37 weeks with preterm premature rupture of membranes (ICD-9-CM code 658.1 or birth certificate

complication of labor/delivery code 10), those with premature labor (ICD-9-CM code 644), or the use of tocolytics (birth certificate complication/procedure of
pregnancy code 28).

Table 2
Distribution of pollutant averages across each exposure period – median (interquartile range).

CO (ppm) NO2 (ppb) PM10 (μg/m3) PM2.5 (μg/m3) Traffic density

Entire pregnancy 0.49 0.18 17.26 4.14 35.93 11.55 17.05 6.39 16.51 45.23
1st trimester 0.49 0.28 17.42 6.43 34.86 16.37 15.18 13.45
2nd trimester 0.47 0.29 17.01 6.63 34.75 16.59 14.41 12.77
3rd trimester 0.45 0.29 16.88 6.68 34.81 17.47 13.91 12.4
Last 6 weeks 0.45 0.29 16.63 6.94 34.05 17.38 13.34 12.2
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air pollution and gestational diabetes was observed except when stra-
tified by maternal age< 20 years, where they found a 1.36 higher odds
of gestational diabetes for each IQR increase of second trimester PM2.5

(Fleisch et al., 2016).
It is plausible that the association between air pollution and preterm

birth may be stronger among those with gestational or pre-existing
diabetes, given their common associations. There have been a few
studies that have examined diabetes (either gestational or pre-existing)
as a potential effect modifier of the association between air pollution
and preterm birth. A study in Ontario, Canada found associations be-
tween PM2.5 and NO2 and preterm birth among those with pre-existing
diabetes (Lavigne et al., 2016a, 2016b). In a study of over 1 million
births in Taiwan, associations between O3 and preterm birth were
stronger among those with gestational diabetes (Lin et al., 2015). We
are also interested in the possibility that diabetes is on the pathway
between air pollution and preterm birth – i.e., that diabetes mediates
the air pollution – preterm birth effect.

We examine the association between air pollution exposure in
pregnancy and gestational diabetes and whether the association be-
tween air pollution and preterm birth is modified and/or mediated by
diabetes in a highly polluted area of California.

2. Methods

2.1. Study population

Birth certificates from all 2000–2006 births to women living in the
four most populated counties in the San Joaquin Valley of California
(Fresno, Kern, Stanislaus and San Joaquin) were obtained from the
California Department of Health. The four study counties included
329,650 births in 2000–2006. Exclusions were multiple births
(n=8373), those missing file numbers (n=262), those with gesta-
tional age missing or< 20 weeks or> 42 weeks (n=45,726), and
those with birth weight missing or< 500 g or> 5000 g (n=762).
Completeness of pollutant assignments was 80% for CO, 94% for NO2,
93% for PM10, 93% for PM2.5, and 96% for traffic density. The study
population included 262,182 births with measurements for at least one
of these pollutants. Furthermore, we linked the birth records with
Office of Statewide Health and Planning (OSHPD) maternal and infant

hospital discharge data, with 98.61% of successfully linked
(n= 258,522). We also removed 6317 births with any missing adjusted
covariates. Therefore, we included 252,205 births for further analysis.

Preterm birth was defined by gestational age at birth as determined
from the last menstrual period on the birth certificate. The maternal
residence at birth street address locations obtained from birth certifi-
cates were geocoded to X and Y coordinates with ArcGIS software
(ESRI, Redlands, California). Addresses were corrected with ZP4 soft-
ware (Semaphore Corporation, Aptos, California).

Ambient air quality data were acquired from U.S. Environmental
Protection Agency's Air Quality System database (www.epa.gov/ttn/
airs/airsaqs). Daily metrics of the following pollutants were calculated:
carbon monoxide (CO), nitrogen dioxide (NO2), particulate matter
≤ than 10 µm (PM10), and PM ≤ than 2.5 µm (PM2.5). These data were
used to create averages for each trimester of pregnancy, entire preg-
nancy average, and the last 6 weeks of pregnancy. The station-specific
daily air quality data were spatially interpolated using inverse distance-
squared weighting (Padula et al., 2014a). Data from up to four air
quality measurement stations were included in each interpolation.
Traffic density was calculated from distance-decayed annual average
daily traffic volumes within a 300m radius of geocoded maternal re-
sidences (Kan et al., 2008). Further details on exposure assessment were
published previously (Padula et al., 2014a, 2014b).

Variables from birth certificates included in analyses were: maternal
age (< 20, 20–24, 25–29, 30–34,> 35 years), maternal race (White,
Hispanic, African-American, Asian, other), maternal education (no high
school, some high school, some college, bachelors or other degree),
parity (0,> 1), prenatal care (initiated in first trimester), Medi-Cal
(Medicaid) or other government program payment of birth costs, infant
sex, year (2000–2006), season of conception, and maternal county of
residence (Fresno, Kern, Stanislaus, San Joaquin).

This research was approved by institutional review boards from the
University of California, Berkeley, Stanford University, and the
California State Committee for the Protection of Human Subjects.

2.2. Statistical analysis

The pollutants for each exposure period were dichotomized at the
highest quartile and compared to the lower three quartiles. A sensitivity
analysis was also performed comparing the highest to the lowest
quartile of each exposure. First, second, and third pregnancy trimesters
were defined as gestational weeks 1–13, 14–26, and 27 to birth, re-
spectively. Additionally, we calculated metrics for the last 6 weeks of
pregnancy (birth minus 42 days). Exposure periods of the term births
were truncated to match the same period as the comparison period-
length of the preterm births and the last 6-week exposures were mat-
ched on gestational age between preterm and term births.

For the first main analysis, the outcome was diagnosis of gestational
diabetes (ICD-9 code: 648.8), obtained from OSHPD - the hospital
discharge records of the mother. Those with pre-existing diabetes were
excluded.

In the second main analysis, preterm birth categories (20–27,
28–31, 32–33, 34–36 weeks) were compared to term births (37–42
weeks) and diabetes (either gestational or pre-existing diabetes; ICD-9
code: 648.0, 250) was considered as an effect modifier. We chose to
combine these two conditions because we hypothesize that the poten-
tial susceptibility to air pollution among the two groups may be shared.
Although age may be a factor (and is adjusted for in the model), women
with gestational diabetes are at risk for diabetes later in life.
Additionally, those with diabetes are no longer at risk of developing
gestational diabetes, and our aim was to include them as a potentially

Table 3
Association between air pollution and gestational diabetes comparing above
versus below highest quartile of exposure (N=252,205).

Pollutant Exposure period Odds ratio (95% Confidence Interval)

Unadjusted Adjusted*

CO 1st Trimester 0.87 (0.83–0.91) 0.91 (0.87–0.96)
CO 2nd Trimester 0.90 (0.86–0.94) 0.92 (0.88–0.96)
NO2 1st Trimester 0.87 (0.83–0.91) 0.91 (0.87–0.95)
NO2 2nd Trimester 0.87 (0.83–0.91) 0.94 (0.90–0.98)
PM10 1st Trimester 0.90 (0.86–0.93) 0.94 (0.90–0.97)
PM10 2nd Trimester 0.87 (0.84–0.90) 0.92 (0.89–0.96)
PM2.5 1st Trimester 0.98 (0.94–1.02) 1.01 (0.97–1.06)
PM2.5 2nd Trimester 0.94 (0.90–0.98) 0.96 (0.92–1.00)
Traffic Density Entire pregnancy 0.97 (0.93–1.01) 0.99 (0.95–1.03)

Highest quartile cut offs: 0.60 ppm for CO, 19.47 ppb for NO2, 42.65 μg/m3 for
PM10, 20.72 μg/m3 for PM2.5, and 45.85 for traffic density.
* Adjusted for maternal race, age, education, payment of birth expenses/

insurance type, prenatal care (and for pollutants, the alternative trimester of
exposure).
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Table 4
Association between air pollution and preterm birth, stratified by diabetes (N=N=252,205).

Gestational age Pollutant exposure Exposure period Adjusted* odds ratio (95% confidence intervals) P-value < 0.2‡

With diabetes† (N=14,493) Without diabetes (N=237,712)

34–36 weeks CO Entire pregnancy 1.12 (0.98–1.28) 1.12 (1.08–1.16)
1st trimester 1.06 (0.93–1.19) 1.05 (1.01–1.08)
2nd trimester 0.98 (0.87–1.12) 1.02 (0.98–1.05)
3rd trimester 0.88 (0.77–1.00) 0.98 (0.94–1.01) 0.123
Last 6 weeks 0.84 (0.74–0.95) 0.96 (0.93–1.00) 0.042

NO2 Entire pregnancy 0.99 (0.87–1.12) 1.07 (1.04–1.11)
1st trimester 0.96 (0.86–1.08) 1.03 (1.00–1.06)
2nd trimester 0.97 (0.86–1.09) 1.03 (0.99–1.06)
3rd trimester 0.92 (0.82–1.04) 0.99 (0.96–1.02)
Last 6 weeks 0.90 (0.80–1.02) 0.99 (0.96–1.02) 0.154

PM10 Entire pregnancy 1.01 (0.90–1.15) 1.09 (1.05–1.12)
1st trimester 0.96 (0.85–1.08) 1.11 (1.07–1.14) 0.029
2nd trimester 1.01 (0.90–1.14) 1.09 (1.05–1.12)
3rd trimester 1.00 (0.89–1.12) 1.04 (1.01–1.07)
Last 6 weeks 0.93 (0.82–1.04) 0.98 (0.95–1.01)

PM2.5 Entire pregnancy 1.19 (1.05–1.34) 1.23 (1.19–1.27)
1st trimester 1.04 (0.93–1.16) 1.05 (1.01–1.08)
2nd trimester 1.05 (0.94–1.18) 1.05 (1.01–1.08)
3rd trimester 0.86 (0.76–0.97) 0.94 (0.91–0.97)
Last 6 weeks 0.89 (0.79–1.00) 0.99 (0.96–1.02) 0.114

Traffic density Entire pregnancy 0.96 (0.85–1.09) 1.05 (1.01–1.08)
32–33 weeks CO Entire pregnancy 1.07 (0.79–1.44) 1.17 (1.08–1.27)

1st trimester 0.99 (0.75–1.30) 0.95 (0.88–1.03)
2nd trimester 0.99 (0.75–1.31) 0.98 (0.90–1.06)
3rd trimester 0.89 (0.67–1.18) 1.03 (0.95–1.12)
Last 6 weeks 0.82 (0.62–1.10) 1.03 (0.95–1.12) 0.136

NO2 Entire pregnancy 1.04 (0.79–1.37) 1.12 (1.03–1.21)
1st trimester 1.12 (0.87–1.44) 1.00 (0.93–1.07)
2nd trimester 1.01 (0.78–1.31) 1.03 (0.96–1.11)
3rd trimester 0.91 (0.70–1.18) 1.03 (0.96–1.11)
Last 6 weeks 0.88 (0.68–1.15) 1.00 (0.93–1.08)

PM10 Entire pregnancy 0.95 (0.71–1.26) 1.13 (1.04–1.22)
1st trimester 1.01 (0.77–1.33) 1.19 (1.11–1.29)
2nd trimester 1.16 (0.89–1.51) 1.10 (1.02–1.19)
3rd trimester 1.02 (0.78–1.32) 1.09 (1.01–1.17)
Last 6 weeks 0.98 (0.75–1.28) 1.01 (0.94–1.09)

PM2.5 Entire pregnancy 1.35 (1.03–1.76) 1.46 (1.36–1.58)
1st trimester 0.97 (0.75–1.25) 1.03 (0.96–1.10)
2nd trimester 1.09 (0.84–1.41) 1.08 (1.00–1.16)
3rd trimester 0.90 (0.69–1.17) 0.93 (0.86–1.01)
Last 6 weeks 1.04 (0.80–1.35) 1.05 (0.98–1.14)

Traffic Density Entire pregnancy 1.19 (0.92–1.56) 1.09 (1.01–1.18)
28–31 weeks CO Entire pregnancy 0.96 (0.63–1.44) 1.16 (1.05–1.28)

1st trimester 0.75 (0.51–1.12) 1.01 (0.92–1.11) 0.140
2nd trimester 0.93 (0.63–1.36) 0.98 (0.89–1.08)
3rd trimester 0.79 (0.52–1.19) 0.98 (0.88–1.08)
Last 6 weeks 0.94 (0.64–1.36) 0.98 (0.89–1.08)

NO2 Entire pregnancy 0.92 (0.64–1.33) 1.12 (1.02–1.23)
1st trimester 0.88 (0.63–1.23) 1.13 (1.04–1.23) 0.168
2nd trimester 1.13 (0.82–1.57) 0.98 (0.90–1.07)
3rd trimester 0.79 (0.56–1.14) 0.94 (0.86–1.03)
Last 6 weeks 0.97 (0.69–1.36) 0.96 (0.88–1.05)

PM10 Entire pregnancy 0.96 (0.66–1.41) 1.01 (0.91–1.11)
1st trimester 1.26 (0.89–1.78) 1.11 (1.01–1.22)
2nd trimester 1.17 (0.82–1.66) 1.02 (0.93–1.13)
3rd trimester 0.78 (0.53–1.14) 0.96 (0.87–1.06)
Last 6 weeks 0.91 (0.64–1.30) 0.94 (0.86–1.04)

PM2.5 Entire pregnancy 1.27 (0.89–1.81) 1.37 (1.25–1.50)
1st trimester 0.89 (0.63–1.25) 1.09 (1.00–1.19)
2nd trimester 1.22 (0.88–1.70) 1.06 (0.97–1.16)
3rd trimester 1.13 (0.80–1.60) 0.89 (0.81–0.98) 0.166
Last 6 weeks 1.17 (0.83–1.63) 1.04 (0.95–1.14)

Traffic Density Entire pregnancy 0.82 (0.57–1.19) 1.02 (0.93–1.12)
20–27 weeks CO Entire pregnancy 2.21 (1.20–4.08) 1.07 (0.93–1.23) 0.026

1st trimester 1.89 (1.04–3.44) 0.99 (0.87–1.13) 0.038
2nd trimester 0.76 (0.37–1.53) 1.01 (0.89–1.15)
3rd trimester NC NC
Last 6 weeks 0.83 (0.42–1.65) 1.04 (0.91–1.18)

NO2 Entire pregnancy 1.56 (0.87–2.80) 1.21 (1.07–1.37)
1st trimester 1.39 (0.80–2.42) 1.04 (0.93–1.17)
2nd trimester 0.77 (0.41–1.44) 1.02 (0.90–1.15)
3rd trimester NC NC

(continued on next page)
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susceptible group. We performed a stratified analysis to explore the
association between the pollutant and preterm birth by diabetes and no
diabetes. Secondly, we created an interaction term (exposure × dia-
betes) to add into the model and used Wald's method to assess the
multiplicative interaction.

Models for both analyses were adjusted for the covariates maternal
race, age, education, payment of birth expenses/insurance type, and
prenatal care. We performed a sensitivity analysis with additional ad-
justment for season of conception and limited preterm births to those
that were spontaneous (preterm labor or premature rupture of mem-
branes) as opposed to medically indicated. Additionally, we removed
women from the analysis who had been diagnosed by either pre-ex-
isting or pregnancy-induced hypertension, or pre-eclampsia to disen-
tangle any potential association attributable to hypertension.

To evaluate the question of whether diabetes mediates the re-
lationship between PM2.5 and extreme preterm birth (20–27 weeks
gestation), we employed the four step method of Baron and Kenny
(Baron and Kenny, 1986). It included the following regressions: (1)
preterm birth ~ (B) PM2.5 + covariates; (2) diabetes ~ PM2.5 + cov-
ariates; (3) preterm birth ~ diabetes + covariates; (4) preterm birth ~
(B1) PM2.5 + (B2) diabetes + covariates) and provides a calculation of
an indirect effect by either B-B1 (Judd and Kenny, 1981) or B*B2
(Sobel, 1982).

All analyses were performed with SAS 9.4 (Cary, NC).

3. Results

The study population was majority Hispanic, followed by white,
non-Hispanic (Table 1). More than half had birth expenses paid by
Medi-Cal (public insurance) and 5% were diagnosed with gestational
diabetes. The distribution of the pollutants (CO, NO2, PM10 and PM2.5)
and traffic density by exposure periods (Table 2). The medians did not
change considerably across pollutants and the distribution was wider
for the shorter exposure periods (i.e., trimester averages compared to

entire pregnancy). Air pollution was dichotomized at the highest
quartile cut off: 0.60 ppm for CO, 19.47 ppb for NO2, 42.65 μg/m3 for
PM10, 20.72 μg/m3 for PM2.5, and 45.85 for traffic density. The corre-
lations between each of the pollutants and exposure periods are pre-
sented in the Appendix.

3.1. Air pollution and gestational diabetes

There was a consistent inverse association between exposure to
traffic-related air pollution during pregnancy and gestational diabetes,
excluding those with pre-existing diabetes (Table 3). In general, there
was approximately a 5–10% decrease in risk of gestational diabetes
comparing above to below highest quartile of exposure to CO, NO2 and
PM2.5. Pollutant exposures were limited to the first two trimesters, prior
to diabetes screening and diagnosis, which generally occurs in weeks
24–28. When comparing the highest to the lowest quartile of exposure,
the results were similar and in some cases the associations were slightly
larger (data not shown).

3.2. Air pollution and preterm birth among those with pre-existing and
gestational diabetes

When stratified by diabetes status (preexisting or gestational versus
neither), the associations between air pollution and preterm birth were
generally very similar across strata with few notable exceptions
(Table 4). Five estimates were statistically different with cut-off of
p < 0.05 for the Mantel Hanzel chi-square. The association between
PM2.5 during the first trimester of pregnancy and very early preterm
birth (20–27 weeks) was considerably stronger among those with dia-
betes (aOR=2.15; 95% CI: 1.24, 3.73) compared with those without
diabetes (aOR=1.07; 95% CI: 0.95, 1.20). A similar pattern was ob-
served for CO during the entire pregnancy and first trimester and very
early preterm birth. The association between PM10 and late preterm
birth (34–36 weeks) was observed among those without diabetes

Table 4 (continued)

Gestational age Pollutant exposure Exposure period Adjusted* odds ratio (95% confidence intervals) P-value < 0.2‡

With diabetes† (N=14,493) Without diabetes (N=237,712)

Last 6 weeks 0.60 (0.31–1.16) 1.06 (0.94–1.19) 0.099
PM10 Entire pregnancy 1.32 (0.72–2.42) 1.15 (1.01–1.30)

1st trimester 1.73 (0.98–3.06) 1.18 (1.04–1.33) 0.175
2nd trimester 0.83 (0.43–1.59) 1.04 (0.92–1.18)
3rd trimester NC NC
Last 6 weeks 0.54 (0.26–1.11) 0.89 (0.79–1.02) 0.197

PM2.5 Entire pregnancy 2.44 (1.39–4.29) 1.58 (1.40–1.78) 0.119
1st trimester 2.15 (1.24–3.73) 1.07 (0.95–1.20) 0.014
2nd trimester 1.32 (0.74–2.36) 1.07 (0.94–1.20)
3rd trimester NC NC
Last 6 weeks 2.56 (1.60–4.09) 1.75 (1.57–1.94)

Traffic Density Entire pregnancy 1.54 (0.95–2.50) 1.19 (1.06–1.33)

NC, not calculated
Highest quartile cut offs: 0.60 ppm for CO, 19.47 ppb for NO2, 42.65 μg/m3 for PM10, 20.72 μg/m3 for PM2.5, and 45.85 for traffic density
* Adjusted for maternal race, age, education, payment of birth expenses/insurance type, prenatal care.
† Gestational and pre-existing diabetes.
‡ P-value< 0.2 for Wald's Chi-squared test for interaction.

A.M. Padula et al. Environmental Research 170 (2019) 160–167

164



(aOR=1.11; 95% CI: 1.07, 1.14) and not among those with diabetes.
Mantel Hanzel chi-square p-values were noted for those with p < 0.02
(Table 4).

3.3. Mediation of diabetes in the association between PM2.5 and extreme
preterm birth

The results of the mediation analysis did not show that diabetes
mediated the relationship between PM2.5 and extreme preterm birth.
The third regression of preterm birth on diabetes was not significant
and the calculation of the indirect effect was near zero (0.0009).

3.4. Sensitivity analyses

When analyses were conducted comparing the highest quartile to
the lowest quartile (rather than the lower three quartiles) of pollutant
measures, the observed results were not meaningfully different.
Similarly, results did not differ when we restricted the outcome to in-
clude only spontaneous preterm births nor when we removed women
with hypertension or pre-eclampsia from the analysis.

4. Discussion

Our large population-based study observed inverse associations (in
the unexpected direction) between air pollution exposures during
pregnancy and gestational diabetes. One explanation might be that a
subset of the population at risk for gestational diabetes and exposed to
high levels of air pollution resulted in miscarriage – and therefore re-
moved from study observation. These results add to the existing in-
consistency across studies examining air pollution exposures during
pregnancy and gestational diabetes (M.-C. Lu et al., 2017; M.C. Lu et al.,
2017; Robledo et al., 2015a; Fleisch et al., 2014, 2016).

We did find evidence of effect modification by diabetes in the re-
lationship between CO and PM2.5 and very early preterm birth. This
finding is consistent with the few previous studies (Lavigne et al.,
2016a; Lin et al., 2015), though our results were not consistent across
multiple pollutants (PM10, NO2) nor multiple categories of preterm
birth (32–33 and 34–36 weeks). Furthermore, the first trimester and the
entire pregnancy period were more often statistically significant for
these associations.

Births on the early end of the very early preterm birth category
(20–27 weeks) may have not had the opportunity to receive gestational
diabetes testing, therefore leading to possible misclassification of the
modifier. However, most women have the test between 24 and 28
weeks and even earlier if there is high glucose in the urine earlier in
pregnancy to capture those at risk of GDM. The confidence intervals
surrounding estimates of odds of preterm birth given air pollution ex-
posure among those with diabetes (~ 5%) are less precise than the
those among those without diabetes owing to the sample size. This may
have decreased our ability to discern a difference in the associations
between other air pollutants and preterm birth by diabetes status.

Our previous analyses of these data excluded women with diabetes
to determine the effect of air pollution on preterm birth. The current
analysis provides a potential pathway by which air pollution may affect
some proportion of preterm birth. Several mechanisms of action have
been hypothesized to explain the pathway by which toxicants may af-
fect adverse reproductive outcomes including preterm birth and ge-
stational diabetes (Ferguson and Chin, 2017). Oxidative stress has been
identified as the most relevant with evidence from increased levels of
lipid peroxidation products and inflammatory cytokines in response to
air pollution exposure (Ferguson et al., 2013; Vadillo-Ortega et al.,
2014).

Although our study sample was large and population-based, it was
not designed specifically to investigate diabetes and identification of
diabetes was ascertained via the medical discharge record; however, we
do not expect that any errors in identification of diabetes were likely
related to air pollution levels, thus, resulting in non-differential mis-
classification. We did not have access to additional relevant clinical
data such as oral glucose tolerance test glucose levels or treatment of
diabetes during pregnancy. Regardless, our study included detailed air
pollution exposure assessment at the precise geocoded residence over a
wide geography and across several years. The levels of several pollu-
tants (PM2.5, PM10 and ozone) caused the San Joaquin Valley to be in
nonattainment during this period. In other words, the levels of these
pollutants are higher than acceptable according to the Clean Air Act.

In conclusion, our study observed an inverse association between air
pollution exposure and risk of gestational diabetes and a stronger effect
of CO and PM2.5 and CO on very early preterm birth among those with
diabetes, compared to those without. This may help identify popula-
tions that are particularly vulnerable to the detrimental effects of air
pollution. Future research could examine this relationship in additional
studies and examine additional maternal morbidities, such as pre-
eclampsia, to explore potential mechanisms by which air pollution af-
fects preterm birth.
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